984 resultados para Finite density
Resumo:
The details of development of the stiffness matrix of a laminated anisotropic curved beam finite element are reported. It is a 16 dof element which makes use of 1-D first order Hermite interpolation polynomials for expressing it's assumed displacement state. The performance of the element is evaluated considering various examples for which analytical or other solutions are available.
Resumo:
The frequency-dependent response of a pinned charge density wave is considered in terms of forced vibration of an oscillator held in an anharmonic well. It is shown that the effective pinning-frequency can be reduced by applying a d.c. field. If a strong a.c. field, superposed on a d.c. field is applied on such a system “jumps” can be observed in the frequency dependent response of the system. The conditions at which these “jumps” occur are investigated with reference to NbSe3. The possibility of observing such phenomena in other systems like superionic conductors, non-linear dielectrics like ferroelectrics is pointed out. The characteristics are expressed in terms of some “scaled variables” — in terms of which the characteristics show a universal behaviour.
Resumo:
Provision of artificial waterpoints in Australian rangelands has resulted in an increase in the range and density of kangaroos. At high densities, kangaroos can inhibit vegetation regeneration, particularly in some protected areas where harvesting is prohibited. Fencing off waterpoints has been proposed to limit these impacts. Our aim was to determine whether fencing off waterpoints during a drought (when kangaroos would be especially water-limited) would influence the density and distribution of red kangaroos (Macropus rufus). Two waterpoints were fenced within the first 6 months of the 27-month study and a further two waterpoints were kept unfenced as controls in Idalia National Park, western Queensland. We estimated kangaroo densities around waterpoints from walked line-transect counts, and their grazing distribution from dung-pellet counts. Fencing off waterpoints failed to influence either the density or distribution up to 4 km from the waterpoints. Our results indicate that food availability, rather than the location of waterpoints, determines kangaroo distribution. Few areas in the rangelands are beyond kangaroos' convenient reach from permanent waterpoints. Therefore, fencing off waterpoints without explicitly considering the spatial context in relation to other available water sources will fail to achieve vegetation regeneration.
Resumo:
The clinical overlap between monogenic Familial Hemiplegic Migraine (FHM) and common migraine subtypes, and the fact that all three FHM genes are involved in the transport of ions, suggest that ion transport genes may underlie susceptibility to common forms of migraine. To test this leading hypothesis, we examined common variation in 155 ion transport genes using 5257 single nucleotide polymorphisms (SNPs) in a Finnish sample of 841 unrelated migraine with aura cases and 884 unrelated non-migraine controls. The top signals were then tested for replication in four independent migraine case-control samples from the Netherlands, Germany and Australia, totalling 2835 unrelated migraine cases and 2740 unrelated controls. SNPs within 12 genes (KCNB2, KCNQ3, CLIC5, ATP2C2, CACNA1E, CACNB2, KCNE2, KCNK12, KCNK2, KCNS3, SCN5A and SCN9A) with promising nominal association (0.00041 < P < 0.005) in the Finnish sample were selected for replication. Although no variant remained significant after adjusting for multiple testing nor produced consistent evidence for association across all cohorts, a significant epistatic interaction between KCNB2 SNP rs1431656 (chromosome 8q13.3) and CACNB2 SNP rs7076100 (chromosome 10p12.33) (pointwise P = 0.00002; global P = 0.02) was observed in the Finnish case-control sample. We conclude that common variants of moderate effect size in ion transport genes do not play a major role in susceptibility to common migraine within these European populations, although there is some evidence for epistatic interaction between potassium and calcium channel genes, KCNB2 and CACNB2. Multiple rare variants or trans-regulatory elements of these genes are not ruled out.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
OBJECTIVE: To determine whether a microsatellite polymorphism located towards the 3' end of the low density lipoprotein receptor gene (LDLR) is associated with obesity. DESIGN: A cross-sectional case-control study. SUBJECTS: One hundred and seven obese individuals, defined as a body mass index (BMI) > or = 26 kg/m2, and 163 lean individuals, defined as a BMI < 26 kg/m2. MEASUREMENTS: BMI, blood pressure, serum lipids, alleles of LDLR microsatellite (106 bp, 108 bp and 112 bp). RESULTS: There was a significant association between variants of the LDLR microsatellite and obesity, in the overall tested population, due to a contributing effect in females (chi 2 = 12.3, P = 0.002), but not in males (chi 2 = 0.3, P = 0.87). In females, individuals with the 106 bp allele were more likely to be lean, while individuals with the 112 bp and/or 108 bp alleles tended to be obese. CONCLUSIONS: These results suggest that in females, LDLR may play a role in the development of obesity.
Resumo:
1. The low density lipoprotein receptor is an important regulator of serum cholesterol which may have implications for the development of both hypertension and obesity. In this study, genotypes for a low density lipoprotein receptor gene (LDLR) dinucleotide polymorphism were determined in both lean and obese normotensive populations. 2. In previous cross-sectional association studies an ApaLI and a HincII polymorphism for LDLR were shown to be associated with obesity in essential hypertensives. However, these polymorphisms did not show an association with obesity in normotensives. 3. In contrast, this study reports that preliminary results for an LDLR microsatellite marker, located more towards the 3' end of the gene, show a significant association with obesity in the normotensive population studied. These results indicate that LDLR could play an important role in the development of obesity, which might be independent of hypertension.
Resumo:
A residual-based strategy to estimate the local truncation error in a finite volume framework for steady compressible flows is proposed. This estimator, referred to as the -parameter, is derived from the imbalance arising from the use of an exact operator on the numerical solution for conservation laws. The behaviour of the residual estimator for linear and non-linear hyperbolic problems is systematically analysed. The relationship of the residual to the global error is also studied. The -parameter is used to derive a target length scale and consequently devise a suitable criterion for refinement/derefinement. This strategy, devoid of any user-defined parameters, is validated using two standard test cases involving smooth flows. A hybrid adaptive strategy based on both the error indicators and the -parameter, for flows involving shocks is also developed. Numerical studies on several compressible flow cases show that the adaptive algorithm performs excellently well in both two and three dimensions.
Resumo:
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Resumo:
This paper is a sequel to the work published by the first and third authors[l] on stiffened laminated shells of revolution made of unimodular materials (materials having identical properties in tension and compression). A finite element analysis of laminated bimodulus composite thin shells of revolution, reinforced by laminated bimodulus composite stiffeners is reported herein. A 48 dot doubly curved quadrilateral laminated anisotropic shell of revolution finite element and it's two compatible 16 dof stiffener finite elements namely: (i) a laminated anisotropic parallel circle stiffener element (PCSE) and (ii) a laminated anisotropic meridional stiffener element (MSE) have been used iteratively. The constitutive relationship of each layer is assumed to depend on whether the fiberdirection strain is tensile or compressive. The true state of strain or stress is realized when the locations of the neutral surfaces in the shell and the stiffeners remain unaltered (to a specified accuracy) between two successive iterations. The solutions for static loading of a stiffened plate, a stiffened cylindrical shell. and a stiffened spherical shell, all made of bimodulus composite materials, have been presented.
Resumo:
An explicit finite element modelling method is formulated using a layered shell element to examine the behaviour of masonry walls subject to out-of-plane loading. Masonry is modelled as a homogenised material with distinct directional properties that are calibrated from datasets of a “C” shaped wall tested under pressure loading applied to its web. The predictions of the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. Profound influence of support conditions, aspect ratio, pre-compression and opening to the strength and ductility of masonry walls is exhibited from the sensitivity analyses performed using the model.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
This work deals with the formulation and implementation of finite deformation viscoplasticity within the framework of stress-based hybrid finite element methods. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements. The conventional return-mapping scheme cannot be used in the context of hybrid stress methods since the stress is known, and the strain and the internal plastic variables have to be recovered using this known stress field.We discuss the formulation and implementation of the consistent tangent tensor, and the return-mapping algorithm within the context of the hybrid method. We demonstrate the efficacy of the algorithm on a wide range of problems.