927 resultados para Epidermal growth factor receptor
Resumo:
Background and Objective: Platelets contain factors, including VEGF and endostatin, that can modulate the healing process. We evaluated the effects of severe thrombocytopenia on periodontal healing in rats and determined the contribution of VEGF and endostatin to the healing process. Material and Methods: Rats were distributed into three test groups and two control groups. Cotton ligatures were placed at the gingival margin level of the lower first molar in the test groups. Sham-operated rats and rats in one of the periodontitis groups were killed 15 days later. Rats in the remaining two periodontitis groups had the ligatures removed in order to study the spontaneous recovery from the periodontal disease 15 days later, and these rats were treated with rabbit antiplatelet serum, in order to induce thrombocytopenia, or normal rabbit serum. An additional group without ligatures received antiplatet serum in the same period. Results: After ligature removal, rats treated with normal rabbit serum showed reduced myeloperoxidase activity, decreased alveolar bone loss and increased numbers of blood vessels. Thrombocytopenia caused a delay in alveolar bone regeneration, a decrease in the number of vessels and a modest decrease in myeloperoxidase activity. In the rats with periodontitis, serum endostatin concentrations were slightly decreased and serum VEGF remained unchanged compared with sham-operated animals. After ligature removal, a significant VEGF increase and endostatin decrease were observed in the rats treated with normal rabbit serum. Thrombocytopenia led to a dramatic fall in both VEGF and endostatin concentrations. Conclusion: Thrombocytopenia leads to a delay of periodontal healing in the situation of experimental periodontitis, which might be mediated in part by a decrease in the serum concentration of VEGF and endostatin derived from the platelets. However, other factors derived from the platelets may also have contributed to a delay of periodontal healing in the rats with thrombocytopenia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives: To examine the effects of triiodothyronine (T3), 17β-estradiol (E2), and tamoxifen (TAM) on transforming growth factor (TGF)-α gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T3; dish 3: T3+TAM; dish 4: TAM; dish 5: E2; dish 6: E2+TAM. TGF-α mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T3 for 48 h significantly increased TGF-α mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-α mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-α mRNA expression is more efficiently upregulated by T3 than E2. Concomitant treatment with TAM had a mitigating effect on the T3 effect, while E2 induced TGF-α upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-α, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER α and β; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E2. ©2008, Editrice Kurtis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is evidence that the platelet-activating factor receptor (PAFR) is involved in the clearance of apoptotic cells by macrophages, and that this is associated with anti-inflammatory phenotype. Our group has previously shown that coinjection of a large number of apoptotic cells can promote tumor growth from a subtumorigenic dose of melanoma cells. Here, we studied the involvement of the PAFR in the tumor growth promoting effect of apoptotic cells. A sub-tumorigenic dose of melanoma cells (Tm1) was coinjected with apoptotic Tm1 cells, subcutaneously in the flank of C57Bl/6 mice, and the volume was monitored for 30 days. Animals received the PAFR antagonists, WEB2170 or PCA4248 (5 mg/kg body weight) or vehicle, by peritumoral daily injection for 5 days. Results showed that PAFR antagonists significantly inhibited the tumor growth induced by the coinjection of a subtumorigenic dose of melanoma cells together with apoptotic cells. This was accompanied by inhibition of early neutrophil and macrophage infiltration. Addition of (platelet-activating factor) to this system has no significant effect. PAFR antagonists did not affect the promoting effect of carrageenan. We suggest that the recognition of apoptotic cells by phagocytes leads to activation of PAFR pathways, resulting in a microenvironment response favorable to melanoma growth.
Resumo:
BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.
Resumo:
Context: Jansen's metaphyseal chondrodysplasia (JMC) is a rare autosomal dominant disorder caused by activating mutations in the PTH 1 receptor (PTH1R; PTH/PTHrP receptor), leading to chronic hypercalcemia and hypercalciuria. Hypophosphatemia is also a hallmark of JMC, and recently, increased fibroblast growth factor 23 (FGF23) levels have been reported in this syndrome. Hypercalcemia has been associated with increased cardiovascular risk; however, cardiovascular disease has not been extensively investigated in JMC patients. Objective: The aim of the study was to describe the long-term follow-up of a JMC patient with regard to the management of hypercalciuria, the evaluation of FGF23 levels under bisphosphonate treatment, and the investigation of cardiovascular repercussion of chronic hypercalcemia. Results: The diagnosis of JCM was confirmed by molecular analysis (p.H223R mutation in PTH1R). The patient was followed from 5 to 27 yr of age. Asymptomatic nephrolithiasis was diagnosed at 18 yr of age, prompting pharmacological management of hypercalciuria. Treatment with alendronate reduced hypercalciuria; however, normocalciuria was only obtained with the association of thiazide diuretic. Serum FGF23 levels, measured under alendronate treatment, were repeatedly within the normal range. Subclinical cardiovascular disease was investigated when the patient was 26 yr old, after 19 yr of sustained mild hypercalcemia; carotid and vertebral artery ultrasonography was normal, as well as coronary computed tomography angiography (calcium score = 0). Conclusion: The long-term follow-up of our JMC patient has provided insight on therapeutic strategies to control hypercalciuria, on the potential effects of alendronate on FGF23 levels, and on the lack of detectable cardiovascular disease at young adulthood after prolonged exposure to hypercalcemia. (J Clin Endocrinol Metab 97: 1098-1103, 2012)
Resumo:
The human airway epithelium is a pseudostratified heterogenous layer comprised of cili-ated, secretory, intermediate and basal cells. As the stem/progenitor population of the airway epi-thelium, airway basal cells differentiate into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. Transcriptome analysis of airway basal cells revealed high expression of vascular endothelial growth factor A (VEGFA), a gene not typically associated with the function of this cell type. Using cultures of primary human airway basal cells, we demonstrate that basal cells express all of the 3 major isoforms of VEGFA (121, 165 and 189) but lack functional expression of the classical VEGFA receptors VEGFR1 and VEGFR2. The VEGFA is actively secreted by basal cells and while it appears to have no direct autocrine function on basal cell growth and proliferation, it functions in a paracrine manner to activate MAPK signaling cascades in endothelium via VEGFR2 dependent signaling pathways. Using a cytokine- and serum-free co-culture system of primary human airway basal cells and human endothelial cells revealed that basal cell secreted VEGFA activated endothelium to ex-press mediators that, in turn, stimulate and support basal cell proliferation and growth. These data demonstrate novel VEGFA mediated cross-talk between airway basal cells and endothe-lium, the purpose of which is to modulate endothelial activation and in turn stimulate and sustain basal cell growth.
Resumo:
Die akute myeloische Leukämie (AML) ist eine heterogene Erkrankung der hämatopoetischen Vorläuferzelle, die durch unkontrollierte Vermehrung und ein reduziertes Differenzierungsverhalten gekennzeichnet ist. Aufgrund von Therapieresistenzen und häufig vorkommenden Rückfällen ist die AML mit einer schlechten Langzeitprognose verbunden. Neue Studienergebnisse zeigen, dass leukämische Zellen einer hierarchischen Ordnung unterliegen, an deren Spitze die leukämische Stammzelle (LSC) steht, welche den Tumor speist und ähnliche Charakteristika besitzt wie die hämatopoetische Stammzelle. Die LSC nutzt den Kontakt zu Zellen der hämatopoetischen Nische des Knochenmarks, um die erste Therapie zu überdauern und Resistenzen zu erwerben. Neue Therapieansätze versuchen diese Interaktion zwischen leukämischen Zellen und supportiv wirkenden Stromazellen anzugreifen. rnrnIn dieser Arbeit sollte die Bedeutung des CXC-Motiv Chemokinrezeptors Typ 4 (CXCR4) und des Connective Tissue Growth Factors (CTGF) innerhalb der AML-Stroma-Interaktion untersucht werden. CXCR4, der in vivo dafür sorgt, dass AML-Zellen in der Nische gehalten und geschützt werden, wurde durch den neuwertigen humanen CXCR4-spezifischen Antikörper BMS-936564/MDX-1338 in AML-Zelllinien und Patientenzellen in Zellkulturversuchen blockiert. Dies induzierte Apoptose sowie Differenzierung und führte in Kokulturversuchen zu einer Aufhebung des Stroma-vermittelten Schutzes gegenüber der Chemotherapie. Für diese Effekte musste teilweise ein sekundärer Antikörper verwendet werden, der die CXCR4-Moleküle miteinander kreuzvernetzt.rnDie Auswertung eines quantitativen Real time PCR (qPCR)-Arrays ergab, dass CTGF in der AML-Zelllinie Molm-14 nach Kontakt zu Stromazellen hochreguliert wird. Diese Hochregulation konnte in insgesamt drei AML-Zelllinien sowie in drei Patientenproben in qPCR- und Western Blot-Versuchen bestätigt werden. Weitere Untersuchungen zeigten, dass diese Hochregulation (i) unabhängig von der Stromazelllinie ist, (ii) den direkten Kontakt zum Stroma benötigt und (iii) auch unter hypoxischen Bedingungen, wie sie innerhalb des Knochenmarks vorherrschen, stattfindet. Der durch Zell-Zell- oder Zell-Matrix-Kontakt gesteuerte Hippo-Signalweg konnte aus folgenden Gründen als möglicher upstream-Regulationsmechanismus identifiziert werden: (i) Dessen zentraler Transkriptions-Kofaktor TAZ wurde in kokultivierten Molm-14-Zellen stabilisiert, (ii) der shRNA-gesteuerte Knockdown von TAZ führte zu einer reduzierten CTGF-Hochregulation, (iii) CTGF wurde in Abhängigkeit von der Zelldichte reguliert, (iv) Cysteine-rich angiogenic inducer 61 (Cyr61), ein weiteres Zielgen von TAZ, wurde in kokultivierten AML-Zellen ebenfalls verstärkt exprimiert. Der Knockdown von CTGF führte in vitro zu einer partiellen Aufhebung der Stroma-vermittelten Resistenz und die Blockierung von CTGF durch den Antikörper FG-3019 wirkte im AML-Mausmodell lebensverlängernd. rn rnDie Rolle von CTGF in der AML ist bisher nicht untersucht. Die vorliegenden Ergebnisse zeigen, dass CTGF ein interessantes Therapieziel in der AML darstellt. Es bedarf weiterer Untersuchungen, um die Bedeutung von CTGF in der Tumor-Stroma-Interaktion näher zu charakterisieren und nachgeschaltete Signalwege zu identifizieren.
Resumo:
FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.