999 resultados para Envoltórias (Geometria)
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove the Bogomolov conjecture for a totally degenerate abelian variety A over a function field. We adapt Zhang's proof of the number field case replacing the complex analytic tools by tropical analytic geometry. A key step is the tropical equidistribution theorem for A at the totally degenerate place.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the whole Euclidean space R2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local in time existence for any mass of "free-energy solutions", namely weak solutions with some free energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free-energy solutions with initial data as before for the critical mass 8 Π/Χ. Actually, we prove that solutions blow-up as a delta dirac at the center of mass when t→∞ keeping constant their second moment at any time. Furthermore, all moments larger than 2 blow-up as t→∞ if initially bounded.
Resumo:
Estudi elaborat a partir d’una estada a l’ Imperial College London, entre juliol i novembre de 2006. En aquest treball s’ha investigat la geometria més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. L’objectiu és assegurar la propagació de l’esquerda sense que la proveta falli abans per cap altre mecanisme de dany per tal de permetre la caracterització experimental de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. Amb aquesta fi, s’ha dut a terme l’anàlisi paramètrica de diferents tipus de provetes mitjançant el mètode dels elements finits (FE) combinat amb la virtual crack closure technique (VCCT). Les geometries de les provetes analitzades corresponen a la proveta de l’assaig compact tension (CT) i diferents variacions com la extended compact tension (ECT), la proveta widened compact tension (WCT), tapered compact tension (TCT) i doubly-tapered compact tension (2TCT). Com a resultat d’aquestes anàlisis s’han derivat diferents conclusions per obtenir la geometria de proveta més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. A més, també s’han dut a terme una sèrie d’assaigs experimentals per tal de validar els resultats de les anàlisis paramètriques. La concordança trobada entre els resultats numèrics i experimentals és bona tot i la presència d’efectes no previstos durant els assaigs experimentals.
Resumo:
Estudi elaborat a partir d’una estada a l'Imperial College of London, Gran Bretanya, entre setembre i desembre 2006. Disposar d'una geometria bona i ben definida és essencial per a poder resoldre eficientment molts dels models computacionals i poder obtenir uns resultats comparables a la realitat del problema. La reconstrucció d'imatges mèdiques permet transformar les imatges obtingudes amb tècniques de captació a geometries en formats de dades numèriques . En aquest text s'explica de forma qualitativa les diverses etapes que formen el procés de reconstrucció d'imatges mèdiques fins a finalment obtenir una malla triangular per a poder‐la processar en els algoritmes de càlcul. Aquest procés s'inicia a l'escàner MRI de The Royal Brompton Hospital de Londres del que s'obtenen imatges per a després poder‐les processar amb les eines CONGEN10 i SURFGEN per a un entorn MATLAB. Aquestes eines les han desenvolupat investigadors del Bioflow group del departament d'enginyeria aeronàutica del Imperial College of London i en l'ultim apartat del text es comenta un exemple d'una artèria que entra com a imatge mèdica i surt com a malla triangular processable amb qualsevol programari o algoritme que treballi amb malles.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we investigate the role of horospheres in Integral Geometry and Differential Geometry. In particular we study envelopes of families of horocycles by means of “support maps”. We define invariant “linear combinations” of support maps or curves. Finally we obtain Gauss-Bonnet type formulas and Chern-Lashof type inequalities.
Resumo:
We propose a generalization of the reduction of Poisson manifolds by distributions introduced by Marsden and Ratiu. Our proposal overcomes some of the restrictions of the original procedure, and makes the reduced Poisson structure effectively dependent on the distribution. Different applications are discussed, as well as the algebraic interpretation of the procedure and its formulation in terms of Dirac structures.
Resumo:
In this paper, we study formal deformations of Poisson structures, especially for three families of Poisson varieties in dimensions two and three. For these families of Poisson structures, using an explicit basis of the second Poisson cohomology space, we solve the deformation equations at each step and obtain a large family of formal deformations for each Poisson structure which we consider. With the help of an explicit formula, we show that this family contains, modulo equivalence, all possible formal eformations. We show moreover that, when the Poisson structure is generic, all members of the family are non-equivalent.