982 resultados para Enamel Microhardness
Resumo:
Experiments of laser welding cast nickel-based superalloy K418 were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness. The corresponding mechanisms were discussed in detail. Results show that the laser welded seam have non-equilibrium solidified microstructures consisting of Cr-Ni-Fe-C austenite solid solution dendrites as the dominant and some fine and dispersed Ni-3(Al,Ti) gamma' phase as well as little amount of MC needle carbides and particles enriched in Nb, Ti and Mo distributed in the interdendritic regions, cracks originated from the liquation of the low melting points eutectics in the HAZ grain boundary are observed, the average microhardness of the welded seam and HAZ is higher than that of the base metal due to alloy elements' redistribution of the strengthening phase gamma'. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The NiAl intermetallic layers and NiAl matrix composite layers with TiC particulate reinforcement were successfully synthesized by laser cladding with coaxial powder feeding of Ni/Al clad powder and Ni/Al + TiC powder mixture, respectively. With optimized processing parameters and powder mixture compositions, the synthesized layers were free of cracks and metallurgical bond with the substrate. The microstructure of the laser-synthesized layers was composed of 6-NiAl phase and a few gamma phases for NiAl intermetallic; unmelted TiC, dispersive fine precipitated TiC particles and refined beta-NiAl phase matrix for TiC reinforced NiAl intermetallic composite. The average microhardness was 355 HV0.1 and 538 HV0.1, respectively. Laser synthesizing and direct metal depositing offer promising approaches for producing NiAl intermetallic and TiC-reinforced NiAl metal matrix composite coatings and for fabricating NiAl intermetallic bulk structure. (C) 2004 Laser Institute of America.
Resumo:
The interface of a laser-discrete-quenched steel substrate and as-deposited chromium electroplate was investigated by ion beam etching, dissolving-substrate-away and using a Vickers microhardness tester, in an attempt to reveal the mechanism that the service life of the chromium-coated parts is increased by the duplex technique of laser pre-quenching plus chromium post-depositing. The laser quenching of the steel substrate can reduce the steep hardness gradient at the substrate/chromium interface and improve the load-bearing capacity of chromium electroplate. Moreover, the laser quenching prior to plating has an extremely great effect on the morphologies and microstructure of the substrate/chromium interface: there is a transient interlayer at the original substrate/chromium interface while there is not at the laser-quenchedzone/chromium interface; the near-substrate surface microstructure and morphologies of the free-standing chromium electrodeposits, whose substrate was dissolved away with nital 30% in volume, inherit the periodically gradient characteristics of the laser-discrete-quenched substrate surface. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A mechanical model of a coating/laser pre-quenched steel substrate specimen with a crack oriented perpendicular to the interface between the coating and the hardened layer is developed to quantify the effects of the residual stress and hardness gradient on the crack driving force in terms of the J-integral. It is assumed that the crack tip is in the middle of the hardened layer of the pre-quenched steel substrate. Using a composite double cantilever beam model, analytical solutions can be derived, and these can be used to quantify the effects of the residual stress and the hardness gradient resulting from the pre-quenched steel substrate surface on the crack driving force. A numerical example is presented to investigate how the residual compressive stress, the coefficient linking microhardness and yield strength and the Young's modulus ratio of the hardened layer to the coating influence the crack driving force for a given crack length. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The anisotropy and gradient of the elastic modulus and the hardness of teeth were investigated by means of instrumented indentation method. Such properties are attributed to the unique microstructures of teeth based on scanning electron microscopic analysis. By comparing the relationship between the ratio of hardness to the reduced elastic modulus and the ratio of elastic unloading work to the total work of teeth in course of indentation to those of other materials, we found that the material behaviors of teeth display metal-like characteristics rather than ceramics as considered traditionally. These material behaviors and relevant functions are discussed briefly.
Resumo:
Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The microstructures and the characteristics of water-atomized, nitrogen gas-atomized Al powders and ultrasonic argon gas-atomized Al-Li alloy powder were investigated by means of metallography, SEM, Auger electron spectroscopy and X-ray diffraction techniques. Rapidly solidified powders were explosively consolidated into different sized cylinders under various explosive parameters. The explosively consolidated compacts have been tested and analysed for density microhardness, retention of rapidly solidified microstructures, interparticle bonding, fractography and lattice distortion. It is shown that the explosive consolidation technique is an effective method for compacting rapidly solidified powders. The characteristics of surface layers play a very important role in determining the effectiveness of the joints sintered, and the Al-Li alloy explosive compacts present an abnormal softening appearance compared to the original powder.
Resumo:
A study of the two-dimensional flow pattern of particles in consolidation process under explosive-implosive shock waves has been performed to further understand the mechanism of shock-wave consolidation of metal powder, in which bunched low-carbon steel wires were used instead of powder. Pressure in the compact ranges from 6 to 30 GPa. Some wires were electroplated with brass, some pickled. By this means, the flow pattern at particle surfaces was observed. The interparticle bonding and microstructure have been investigated systematically for the consolidated specimens by means of optical and electron microscopy, as well as by microhardness. The experimental results presented here are qualitatively consistent with Williamson's numerical simulation result when particle arrangement is close packed, but yield more extensive information. The effect of surface condition of particle on consolidation quality was also studied in order to explore ways of increasing the strength of the compacts. Based on these experiments, a physical model for metal powder shock consolidation has been established.
Resumo:
Experiments were conducted on copper subjected to High Pressure Torsion to investigate the evolution of microstructure and microhardness with shear strain, gamma. Observations have been carried out in the longitudinal section for a proper demonstration of the structure morphology. An elongated dislocation cell/subgrain structure was observed at relatively low strain level. With increasing strain, the elongated subgrains transformed into elongated grains and finally into equiaxed grains with high angle grain boundaries. Measurements showed the hardness increases with increasing gamma then tends to saturations when gamma >5. The variation tendency of microhardness with gamma can be simulated by Voce-type equation.
Resumo:
The use of growth layers in teeth as an indicator of age in odnotocetes and pinnipeds was suggested by Laws (1954) and since then the method has been used extensively in both marine and non-marine mammals. Dentinal growth layers are groups (growth layer groups) of repetitive alternating bands which in cross-section are similar to growth rings in trees. The most commonly used methods for counting growth layer groups (GLGs) are by undecalcified longitudinal thin sections (150 um) or decalcified and stained thin sections (10-30 um). In longitudinal sections viewed with light microscopy, GLGs appear as opaque and translucent cones nestled one inside another, with the oldest dentine Iying adjacent to the enamel, and the newest layer borderinq the pulp cavity.
Resumo:
目前国际上占主导地位的纳米压痕技术是由Oliver与Pharr提出并发展,目前的纳米压痕可以给出整个加、卸载过程的载荷—位移曲线以及硬度与弹性模量随压痕深度变化的曲线,从而提供了丰富的、比较精确的信息,为利用它探索材料比较完整的力学特性提供了可能.为达到该目的,就必须对压痕实验的加、卸过程进行较为深入的研究.作为主要的研究工具,有限元方法模拟微压痕过程在探讨通过实验数据得到更多、更准确的材料表层力学性能参数以及解释实验现象等方面发挥着重要作用.基于计算机速度与容量的原因,较早进行微压痕过程有限元模拟的BhattacharyaandNix、LaursenandSino都使用圆锥压头模拟维氏显微硬度标准正四棱锥Vicker压头与纳米压痕仪标准正三棱锥Berkovich压头,因为圆锥压头具有旋转对称性,可用二维旋转对称单元(二维实体单元)进行计算从而降低计算规模.即便如此,以当时大型计算机的水平,对规模为400~2000个四节点矩形单元的有限元模型进行一次完整的加、卸载过程也需要1~2天.到目前为止,微尺度压痕实验的数值模拟沿用二维模型.事实上,由于加工工艺的限制,微尺度压痕仪的压头如Berkovich与Vicker压头均不个旋转对称性;就微观尺度而言,实际的表层材料都是非均匀的.这些特征均不能由二维模拟体现,所以该文首先建立三维有限元模型,模拟带滑动接触的微尺度压痕加、卸载过程.在此基础上重点讨论了压头几何效应的问题,如二维模拟与三维模拟的关系、显微硬度与纳米的压痕硬度的关系、不同压头下材料的应力应变场、压痕间距与压痕边界的效应等,最后针对微尺度压痕实验中出现的压痕硬度随压痕深度减小而升高的现象,讨论了影响不同压痕深度硬度值的因素.
Resumo:
A process of laser cladding Ni-CF-C-CaF2 mixed powders to form a multifunctional composite coatingd on gamma-TiAl substrate was carried out. The microstructure of the coating was examined using XRD, SEM and EDS. The coating has a unique microstructure consisting of primary dendrite or short-stick TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (gamma) matrix. The average microhardness of the composite coatings is approximately HV 650 and it is 2-factor greater than that of the TiAl substrate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Com a introdução do flúor como o principal agente anticariogênico e, talvez, um aumento do flúor na nossa cadeia alimentar, a fluorose dentária tornou-se um problema mundial. Os mecanismos que conduzem à formação do esmalte fluorótico são desconhecidos, mas devem envolver modificações nas reações físico-químicas básicas de desmineralização e remineralização do esmalte dentário. O aumento daquantidade de flúor no cristal apatita resulta no aumento dos parâmetros de rede. O objetivo deste trabalho é caracterizar o esmalte dentário humano saudável e fluorótico usando difração de raios X com luz síncrotron. Todos os perfis de espalhamento foram medidos na linha de difração de raios X (XRD1) do Laboratório Nacional de Luz Síncrotron, Campinas SP. Os experimentos foram realizados usando amostras em pó e em lâminas polidas. As amostras em pó foram analisadas a fim de obter a caracterização do esmalte dentário saudável. As lâminas foram analisadas em áreas do esmalte específicas identificadas como fluoróticas. Todos os perfis foram comparados com amostras de esmalte de controle e também com a literatura. A evidente similaridade entre os perfis de difração mostraram a analogia entre as estruturas do esmalte dentário e a hidroxiapatita padrão. Fica evidente que os perfis de difração do esmalte dentário das amostras em lâmina são diferentes daqueles obtidos para o esmalte em pó. As diferenças encontradas incluem variação na cristalinidade e orientação preferencial. Os valores encontrados para as distâncias interplanares para o esmalte de controle e fluorótico das amostras em lâmina não apresentaram diferenças estatisticamente significativas. Isto pode ser explicado pelo fato que a hidroxiapatita e a fluoropatita formam cristais com a mesma estrutura hexagonal, mesmo grupo de simetria e têm parâmetros de rede muito próximos, os quais a habilidade do sistema não foi suficiente para resolver. Finalmente, este trabalho mostra que a difração de raios X usando radiação síncrotron é uma técnica poderosa para o estudo da cristalografia e microestrutura do esmalte dentário e, ainda, pode ser igualmente aplicada no estudo de outros tecidos biológicos duros e de biomateriais sintéticos.
Resumo:
O objetivo deste estudo foi comparar os resultados da microinfiltração marginal obtidos por diferentes meios de aquisição de imagens e métodos de mensuração da penetração de prata em restaurações de resina composta classe V, in vitro. Dezoito pré-molares humanos hígidos, recém extraídos, foram divididos em três grupos, de acordo com o tipo de instrumento para preparação cavitária utilizado. Grupo 1: ponta diamantada número 3100, em alta rotação. Grupo 2: broca carbide número 330, em alta rotação. Grupo 3: ponta CVDentus código 82137, em aparelho de ultrassom. Foram realizados preparos cavitários padronizados (3x4x2mm) classe V nas faces vestibular e lingual de todos os dentes, com margens oclusais em esmalte e cervicais em dentina/cemento. As cavidades foram restauradas com o sistema adesivo Solobond M (VOCO) e resina composta Grandio (VOCO), a qual foi inserida e fotoativada em três incrementos. Os corpos de prova ficaram imersos em água destilada por 24h a 37oC; receberam acabamento e polimento com discos SofLex (3M) e foram novamente armazenados em água destilada, por sete dias. Posteriormente, as superfícies dentárias foram coberta com duas camadas de esmalte para unhas vermelho, exceto as áreas adjacentes às restaurações. Os espécimes ficaram imersos em solução aquosa de nitrato de prata a 50% por 24h e em solução fotorreveladora por 2h e foram seccionados no sentido vestíbulo-lingual, passando pelo centro das restaurações, com disco diamantado em baixa rotação. As amostras foram polidas em politriz horizontal e analisadas por diferentes métodos. À extensão da microinfiltração foi atribuído escores de 0 a 3 através de análises por meio de estereomicroscópio tradicional e com leds e microscópio ótico. As imagens obtidas na lupa com leds e no microscópio ótico tiveram as áreas infiltradas medidas através do software AxioVision. O teste χ2 de McNemar-Bowker revelou concordância estatística entre estereomicroscópio tradicional e o com leds (p=0,809) durante análises semiquantitativas. Porém, houve diferenças significantes entre microscópio ótico e estereomicroscópios (p<0,001). Houve boa correlação entre análises semiquantitativas e quantitativas de acordo com o teste de Spearmann (p<0,001). O teste de Kruskall-Wallis não revelou diferenças estatisticamente significantes (p=0,174) entre os grupos experimentais na análise quantitativa por microscópio ótico, em esmalte. Ao contrário do que se observa com a mesma em lupa (p<0,001). Conclui-se que o método de atribuição de escores comumente aplicado com a lupa nos estudos da microinfiltração marginal é uma opção confiável para análise da microinfiltração.