816 resultados para Embedded System, Domain Specific Language (DSL), Agenti BDI, Arduino, Agentino
Resumo:
This paper proposes a methodology for developing a speech into sign language translation system considering a user-centered strategy. This method-ology consists of four main steps: analysis of technical and user requirements, data collection, technology adaptation to the new domain, and finally, evalua-tion of the system. The two most demanding tasks are the sign generation and the translation rules generation. Many other aspects can be updated automatical-ly from a parallel corpus that includes sentences (in Spanish and LSE: Lengua de Signos Española) related to the application domain. In this paper, we explain how to apply this methodology in order to develop two translation systems in two specific domains: bus transport information and hotel reception.
No specific role for the manual motor system in processing the meanings of words related to the hand
Resumo:
The present study explored whether semantic and motor systems are functionally interwoven via the use of a dual-task paradigm. According to embodied language accounts that propose an automatic and necessary involvement of the motor system in conceptual processing, concurrent processing of hand-related information should interfere more with hand movements than processing of unrelated body-part (i.e., foot, mouth) information. Across three experiments, 100 right-handed participants performed left- or right-hand tapping movements while repeatedly reading action words related to different body-parts, or different body-part names, in both aloud and silent conditions. Concurrent reading of single words related to specific body-parts, or the same words embedded in sentences differing in syntactic and phonological complexity (to manipulate context-relevant processing), and reading while viewing videos of the actions and body-parts described by the target words (to elicit visuomotor associations) all interfered with right-hand but not left-hand tapping rate. However, this motor interference was not affected differentially by hand-related stimuli. Thus, the results provide no support for proposals that body-part specific resources in cortical motor systems are shared between overt manual movements and meaning-related processing of words related to the hand.
Resumo:
In order to reduce heterogeneity in schizophrenia, a system-specific approach consisting of the domains "language", "affect" and "motor behavior" has been proposed. We examined this system-specific approach for its applicability to clinical practice in the motor behavior domain, using the methodological approach of case studies, and discuss here the differences to the positive/negative concept. We analyzed eight cases with stable motor-dominant symptoms, and also quantitatively assessed motor behavior by using the Bern Psychopathology Scale (BPS), a standardized psychopathological assessment instrument, as well as actigraphic data. Characterization of cases using the positive/negative approach was not helpful. We found an overlap of the motor behavior domain with the other two domains. This complicates the application of the system-specific approach in the sense of a typology. Furthermore, we found both relapsing courses with full remission and chronic courses with deterioration within the motor-dominant subtype. Nevertheless, the system-specific approach has heuristic utility for the future.
Resumo:
This paper proposes the use of Factored Translation Models (FTMs) for improving a Speech into Sign Language Translation System. These FTMs allow incorporating syntactic-semantic information during the translation process. This new information permits to reduce significantly the translation error rate. This paper also analyses different alternatives for dealing with the non-relevant words. The speech into sign language translation system has been developed and evaluated in a specific application domain: the renewal of Identity Documents and Driver’s License. The translation system uses a phrase-based translation system (Moses). The evaluation results reveal that the BLEU (BiLingual Evaluation Understudy) has improved from 69.1% to 73.9% and the mSER (multiple references Sign Error Rate) has been reduced from 30.6% to 24.8%.
Resumo:
This paper presents a methodology for adapting an advanced communication system for deaf people in a new domain. This methodology is a user-centered design approach consisting of four main steps: requirement analysis, parallel corpus generation, technology adaptation to the new domain, and finally, system evaluation. In this paper, the new considered domain has been the dialogues in a hotel reception. With this methodology, it was possible to develop the system in a few months, obtaining very good performance: good speech recognition and translation rates (around 90%) with small processing times.
Resumo:
Because of the bottlenecking operations in a complex coal rail system, millions of dollars are costed by mining companies. To handle this issue, this paper investigates a real-world coal rail system and aims to optimise the coal railing operations under constraints of limited resources (e.g., limited number of locomotives and wagons). In the literature, most studies considered the train scheduling problem on a single-track railway network to be strongly NP-hard and thus developed metaheuristics as the main solution methods. In this paper, a new mathematical programming model is formulated and coded by optimization programming language based on a constraint programming (CP) approach. A new depth-first-search technique is developed and embedded inside the CP model to obtain the optimised coal railing timetable efficiently. Computational experiments demonstrate that high-quality solutions are obtainable in industry-scale applications. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and specific criteria. Keywords Train scheduling · Rail transportation · Coal mining · Constraint programming
Resumo:
The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.
Resumo:
This paper is centered around the design of a thread- and memory-safe language, primarily for the compilation of application-specific services for extensible operating systems. We describe various issues that have influenced the design of our language, called Cuckoo, that guarantees safety of programs with potentially asynchronous flows of control. Comparisons are drawn between Cuckoo and related software safety techniques, including Cyclone and software-based fault isolation (SFI), and performance results suggest our prototype compiler is capable of generating safe code that executes with low runtime overheads, even without potential code optimizations. Compared to Cyclone, Cuckoo is able to safely guard accesses to memory when programs are multithreaded. Similarly, Cuckoo is capable of enforcing memory safety in situations that are potentially troublesome for techniques such as SFI.
Resumo:
Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
The translation from psychiatric core symptoms to brain functions and vice versa is a largely unresolved issue. In particular, the search for disorders of single brain regions explaining classical symptoms has not yielded the expected results. Based on the assumption that the psychopathology of psychosis is related to a functional imbalance of higher-order brain systems, the authors focused on three specific candidate brain circuitries, namely the language, and limbic and motor systems. These domains are of particular interest for understanding the disastrous communication breakdown during psychotic disorders. Core symptoms of psychosis were mapped on these domains by shaping their definitions in order to match the related brain functions. The resulting psychopathological assessment scale was tested for interrater reliability and internal consistency in a group of 168 psychotic patients. The items of the scale were reliable and a principal component analysis (PCA) was best explained by a solution resembling the three candidate systems. Based on the results, the scale was optimized as an instrument to identify patient subgroups characterized by a prevailing dysfunction of one or more of these systems. In conclusion, the scale is apt to distinguish symptom domains related to the activity of defined brain systems. PCA showed a certain degree of independence of the system-specific symptom clusters within the patient group, indicating relative subgroups of psychosis. The scale is understood as a research instrument to investigate psychoses based on a system-oriented approach. Possible immediate advantages in the clinical application of the understanding of psychoses related to system-specific symptom domains are also discussed.
Resumo:
Motor symptoms in schizophrenia occur frequently and are relevant to diagnosis and antipsychotic therapy. To date motor symptoms are difficult to assess and their pathobiology is a widely unresolved issue. The Bern Psychopathology Scale for the assessment of system-specific psychotic symptoms (BPS) was designed to identify homogenous patient groups by focusing on three domains: language, affectivity and motor behavior. The present study aimed to validate the motor behavior domain of the BPS using wrist actigraphy. In total, 106 patients were rated with the BPS and underwent 24 h continuous actigraphy recording. The ratings of the global severity of the motor behavior domain (GSM) as well as the quantitative and the subjective items of the motor behavior domain of the BPS were significantly associated with actigraphic variables. In contrast, the qualitative items of the motor domain failed to show an association with actigraphy. Likewise, scores of the language and the affectivity domains were not related to actigraphic measures. In conclusion, we provided substantial external validity for global, quantitative and subjective ratings of the BPS motor behavior domain. Thus, the BPS is suitable to assess the dimension of quantitative motor behavior in the schizophrenia spectrum.
Resumo:
BACKGROUND Schizophrenia is a heterogeneous disorder. Over the years, different approaches have been proposed to approach this heterogeneity by categorizing symptom patterns. The study aimed to compare positive/negative and system-specific approaches to subtyping. METHODS We used the Positive and Negative Syndrome Scale (PANSS) and Bern Psychopathology Scale (BPS), which consists of subscales for three domains (language, affect and motor behavior) that are hypothesized to be related to specific brain circuits, to assess cross-sectional psychopathological characteristics in a sample of 100 inpatients with schizophrenia spectrum disorders. We then categorized participants into positive/negative and system-specific subgroups to allow comparisons of the two approaches. RESULTS The analyses revealed correlations between the PANSS positive subscore and the BPS affective subscore (r=.446, p<.001) and between the PANSS negative subscore and the BPS motor behavior subscore (r=.227, p=.023). As regards the positive and negative subtype, more participants were classified as positive in the language-dominant subtype (30.3%) and affect-dominant subtype (30.3%), whereas more were classified as negative in the motor behavior-dominant subtype (44.4%). However, most patients met the criteria for the mixed subtype. CONCLUSIONS The results suggest that the positive/negative and system-specific approaches can be regarded as complementary. Future studies should examine both approaches in a longitudinal assessment of psychopathological symptoms and link them with qualitative-phenomenological approaches.
Resumo:
This paper describes a preprocessing module for improving the performance of a Spanish into Spanish Sign Language (Lengua de Signos Espanola: LSE) translation system when dealing with sparse training data. This preprocessing module replaces Spanish words with associated tags. The list with Spanish words (vocabulary) and associated tags used by this module is computed automatically considering those signs that show the highest probability of being the translation of every Spanish word. This automatic tag extraction has been compared to a manual strategy achieving almost the same improvement. In this analysis, several alternatives for dealing with non-relevant words have been studied. Non-relevant words are Spanish words not assigned to any sign. The preprocessing module has been incorporated into two well-known statistical translation architectures: a phrase-based system and a Statistical Finite State Transducer (SFST). This system has been developed for a specific application domain: the renewal of Identity Documents and Driver's License. In order to evaluate the system a parallel corpus made up of 4080 Spanish sentences and their LSE translation has been used. The evaluation results revealed a significant performance improvement when including this preprocessing module. In the phrase-based system, the proposed module has given rise to an increase in BLEU (Bilingual Evaluation Understudy) from 73.8% to 81.0% and an increase in the human evaluation score from 0.64 to 0.83. In the case of SFST, BLEU increased from 70.6% to 78.4% and the human evaluation score from 0.65 to 0.82.