991 resultados para DOMAIN-II


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of the cations thallium(I), calcium(II) and terbium(III) to methyl methacrylate-methacrylic acid copolymers with different fractions of acid groups (x) has been studied in aqueous solution at, various pH values using the fluorescence of covalently bonded 9-vinyl anthracene as a probe. In all cases, the extent of binding increases as a function of the charge of the polymer with either increasing fraction of carboxylic acids or of pH. However, differences are observed in the behavior of the three cations, With Tl(I), quenching of the anthracene group fluorescence is observed. indicating that the thallium(I) approaches the probe and suggesting that the alkylanthracene is probably in a relatively polar region. Binding constants have been determined from anthracene quenching data and from studies with the fluorescent-probe sodium pyrenetetrasulfonate, Good agreement is obtained between the two methods, and values for the binding constants increase from 250 to 950 M-1 as x increases from 0.39 to 1. It is suggested that the cation is held in the polyelectrolyte domain, partly by Debye-Huckel effects and partly by more specific interactions. Stronger binding is found with calcium(II) and terbium(III), and in this case increases in fluorescence intensity are observed on complexation due to the anthracene group being in a more hydrophobic region, probably as a result of conformational changes in the polymer chain. In the former case the stoichiometry of the interaction was determined from the fluorescence data to involve two carboxylate groups bound per calcium. Association constants were found using murexide as an indicator of free calcium to vary from 8400 to 37 000 M-1 as x increases from 0.39 to 1. It is suggested that in this case specific calcium(II)-carboxylate interactions contribute to the binding. With terbium(III), a greater increase in the probe fluorescence intensity was observed than with calcium, and it is suggested that the interaction with the polymer is even stronger, leading to a more pronounced conformational change in the polymer. It is proposed that the terbium(III) interacts with sis carboxylic groups on the polymer chain, with three being coordinated and three attracted by electrostatic interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amicarbazone is a new triazolinone herbicide with a broad spectrum of weed control. The phenotypic responses of sensitive plants exposed to amicarbazone include chlorosis, Stunted growth, tissue necrosis, and death. Its efficacy as both a foliar- and root-applied herbicide suggests that absorption and translocation of this compound is very rapid. This new herbicide is a potent inhibitor of photosynthetic electron transport, inducing chlorophyll fluorescence and interrupting oxygen evolution ostensibly via binding to the Q(B) domain of photosystem II (PSII) in a manner similar to the triazines and the triazinones classes of herbicides. As a result, its efficacy is susceptible to the most common form of resistance to PSII inhibitors. Nonetheless, amicarbazone has a good selectivity profile and is a more potent herbicide than atrazine, which enables its use at lower rates than those of traditional photosynthetic inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7. Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference. © 2011 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of nonstandardized and inadequately validated outcome measures in atopic eczema trials is a major obstacle to practising evidence-based dermatology. The Harmonising Outcome Measures for Eczema (HOME) initiative is an international multiprofessional group dedicated to atopic eczema outcomes research. In June 2011, the HOME initiative conducted a consensus study involving 43 individuals from 10 countries, representing different stakeholders (patients, clinicians, methodologists, pharmaceutical industry) to determine core outcome domains for atopic eczema trials, to define quality criteria for atopic eczema outcome measures and to prioritize topics for atopic eczema outcomes research. Delegates were given evidence-based information, followed by structured group discussion and anonymous consensus voting. Consensus was achieved to include clinical signs, symptoms, long-term control of flares and quality of life into the core set of outcome domains for atopic eczema trials. The HOME initiative strongly recommends including and reporting these core outcome domains as primary or secondary endpoints in all future atopic eczema trials. Measures of these core outcome domains need to be valid, sensitive to change and feasible. Prioritized topics of the HOME initiative are the identification/development of the most appropriate instruments for the four core outcome domains. HOME is open to anyone with an interest in atopic eczema outcomes research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings: Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions: Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der Haupt-Lichtsammelkomplex (LHCII) des Photosyntheseapparates höherer Pflanzen gehört zu den häufigsten Membranproteinen der Erde. Seine Kristallstruktur ist bekannt. Das Apoprotein kann rekombinant in Escherichia coli überexprimiert und somit molekularbiologisch vielfältig verändert werden. In Detergenzlösung besitzt das denaturierte Protein die erstaunliche Fähigkeit, sich spontan zu funktionalen Protein-Pigment-Komplexen zu organisieren, welche strukturell nahezu identisch sind mit nativem LHCII. Der Faltungsprozess findet in vitro im Zeitbereich von Sekunden bis Minuten statt und ist abhängig von der Bindung der Cofaktoren Chlorophyll a und b sowie verschiedenen Carotinoiden.rn Diese Eigenschaften machen LHCII besonders geeignet für Strukturuntersuchungen mittels der elektronenparamagnetischen Resonanz (EPR)-Spektrokopie. Diese setzt eine punktspezifische Spinmarkierung des LHCII voraus, die in dieser Arbeit zunächst optimiert wurde. Einschließlich der Beiträge Anderer stand eine breite Auswahl von über 40 spinmarkierten Mutanten des LHCII bereit, einen N-terminalen „Cys walk“ eingeschlossen. Weder der hierfür notwendige Austausch einzelner Aminosäuren noch die Anknüpfung des Spinmarkers beeinträchtigten die Funktion des LHCII. Zudem konnte ein Protokoll zur Präparation heterogen spinmarkierter LHCII-Trimere entwickelt werden, also von Trimeren, die jeweils nur ein Monomer mit einer Spinmarkierung enthalten.rn Spinmarkierte Proben des Detergenz-solubilisierten LHCII wurden unter Verwendung verschiedener EPR-Techniken strukturell analysiert. Als besonders aussagekräftig erwies sich die Messung der Wasserzugänglichkeit einzelner Aminosäurepositionen anhand der Electron Spin Echo Envelope Modulation (ESEEM). In Kombination mit der etablierten Double Electron-Electron Resonance (DEER)-Technik zur Detektion von Abständen zwischen zwei Spinmarkern wurde der membranständige Kernbereich des LHCII in Lösung eingehend untersucht und strukturell der Kristallstruktur für sehr ähnlich befunden. Die Vermessung kristallographisch nicht erfasster Bereiche nahe dem N-Terminus offenbarte die schon früher detektierte Strukturdynamik der Domäne in Abhängigkeit des Oligomerisierungsgrades. Der neue, noch zu vervollständigende Datensatz aus Abstandsverteilungen und ESEEM-Wasserzugänglichkeiten monomerer wie trimerer Proben sollte in naher Zukunft die sehr genaue Modellierung der N-terminalen Domäne des LHCII ermöglichen.rn In einem weiteren Abschnitt der Arbeit wurde die Faltung des LHCII-Apoproteins bei der LHCII-Assemblierung in vitro untersucht. Vorausgegangene fluoreszenzspektroskopi-sche Arbeiten hatten gezeigt, dass die Bindung von Chlorophyll a und b in aufeinanderfolgenden Schritten im Zeitbereich von weniger als einer Minute bzw. mehreren Minuten erfolgten. Sowohl die Wasserzugänglichkeit einzelner Aminosäurepositionen als auch Spin-Spin-Abstände änderten sich in ähnlichen Zeitbereichen. Die Daten deuten darauf hin, dass die Ausbildung der mittleren Transmembran-Helix mit der schnelleren Chlorophyll-a-Bindung einhergeht, während sich die Superhelix aus den beiden anderen Transmembranhelices erst im langsameren Schritt, zusammen mit der Chlorophyll-b-Bindung, ausbildet.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanolamine phosphoglycerol (EPG) is a protein modification attached exclusively to eukaryotic elongation factor 1A (eEF1A). In mammals and plants, EPG is linked to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote Trypanosoma brucei, only domain III is modified by a single EPG. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but nothing is known about the EPG modifying enzyme(s). By expressing human eEF1A in T. brucei, we now show that EPG attachment to eEF1A is evolutionarily conserved between T. brucei and Homo sapiens. In contrast, S. cerevisiae eEF1A, which has been shown to lack EPG is not modified in T. brucei. Furthermore, we show that eEF1A cannot functionally complement across species when using T. brucei and S. cerevisiae as model organisms. However, functional complementation in yeast can be obtained using eEF1A chimera containing domains II or III from other species. In contrast, yeast domain I is strictly required for functional complementation in S. cerevisiae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between sensory rhodopsin II (SRII) and its transducer HtrII was studied by the time-resolved laser-induced transient grating method using the D75N mutant of SRII, which exhibits minimal visible light absorption changes during its photocycle, but mediates normal phototaxis responses. Flash-induced transient absorption spectra of transducer-free D75N and D75N joined to 120 amino-acid residues of the N-terminal part of the SRII transducer protein HtrII (DeltaHtrII) showed only one spectrally distinct K-like intermediate in their photocycles, but the transient grating method resolved four intermediates (K(1)-K(4)) distinct in their volumes. D75N bound to HtrII exhibited one additional slower kinetic species, which persists after complete recovery of the initial state as assessed by absorption changes in the UV-visible region. The kinetics indicate a conformationally changed form of the transducer portion (designated Tr*), which persists after the photoreceptor returns to the unphotolyzed state. The largest conformational change in the DeltaHtrII portion was found to cause a DeltaHtrII-dependent increase in volume rising in 8 micros in the K(4) state and a drastic decrease in the diffusion coefficient (D) of K(4) relatively to those of the unphotolyzed state and Tr*. The magnitude of the decrease in D indicates a large structural change, presumably in the solvent-exposed HAMP domain of DeltaHtrII, where rearrangement of interacting molecules in the solvent would substantially change friction between the protein and the solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type II collagen is a major chondrocyte-specific component of the cartilage extracellular matrix and it represents a typical differentiation marker of mature chondrocytes. In order to delineate cis-acting elements of the mouse pro$\alpha1$(II) collagen gene that control chondrocyte-specific expression in intact mouse embryos, we generated transgenic mice harboring chimeric constructions in which varying lengths of the promoter and intron 1 sequences were linked to a $\beta$-galactosidase reporter gene. A construction containing a 3000-bp promoter and a 3020-bp intron 1 fragment directed high levels of $\beta$-galactosidase expression specifically to chondrocytes. Successive deletions of intron 1 delineated a 48-bp fragment which targeted $\beta$-galactosidase expression to chondrocytes with the same specificity as the larger intron 1 fragment. When the Col2a1 promoter was replaced with a minimal $\beta$-globin promoter, the 48-bp intron 1 sequence was still able to target expression of the transgene to chondrocytes, specifically. Therefore a 48-bp intron 1 DNA segment of the mouse Col2a1 gene contains the necessary information to confer high-level, temporally correct, chondrocyte expression to a reporter gene in intact mouse embryos and that Col2a1 promoter sequences are dispensable for chondrocyte expression. Nuclear proteins present selectively in mouse primary chondrocytes and rat chondrosarcoma cells bind to the three putative HMG (High-Mobility-Group) domain protein binding sites in this 48-bp sequence and the chondrocyte-specific proteins likely bind the DNA through minor groove. Together, my results indicate that a 48-bp sequence in Col2a1 intron 1 controls chondrocyte-specific expression in vivo and suggest that chondrocytes contain specific nuclear proteins involved in enhancer activity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS Patients with ST-segment elevation myocardial infarction (STEMI) feature thrombus-rich lesions with large necrotic core, which are usually associated with delayed arterial healing and impaired stent-related outcomes. The use of bioresorbable vascular scaffolds (Absorb) has the potential to overcome these limitations owing to restoration of native vessel lumen and physiology at long term. The purpose of this randomized trial was to compare the arterial healing response at short term, as a surrogate for safety and efficacy, between the Absorb and the metallic everolimus-eluting stent (EES) in patients with STEMI. METHODS AND RESULTS ABSORB-STEMI TROFI II was a multicentre, single-blind, non-inferiority, randomized controlled trial. Patients with STEMI who underwent primary percutaneous coronary intervention were randomly allocated 1:1 to treatment with the Absorb or EES. The primary endpoint was the 6-month optical frequency domain imaging healing score (HS) based on the presence of uncovered and/or malapposed stent struts and intraluminal filling defects. Main secondary endpoint included the device-oriented composite endpoint (DOCE) according to the Academic Research Consortium definition. Between 06 January 2014 and 21 September 2014, 191 patients (Absorb [n = 95] or EES [n = 96]; mean age 58.6 years old; 17.8% females) were enrolled at eight centres. At 6 months, HS was lower in the Absorb arm when compared with EES arm [1.74 (2.39) vs. 2.80 (4.44); difference (90% CI) -1.06 (-1.96, -0.16); Pnon-inferiority <0.001]. Device-oriented composite endpoint was also comparably low between groups (1.1% Absorb vs. 0% EES). One case of definite subacute stent thrombosis occurred in the Absorb arm (1.1% vs. 0% EES; P = ns). CONCLUSION Stenting of culprit lesions with Absorb in the setting of STEMI resulted in a nearly complete arterial healing which was comparable with that of metallic EES at 6 months. These findings provide the basis for further exploration in clinically oriented outcome trials.