534 resultados para DISCONTINUITIES
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura com especialização em Urbanismo, apresentada na Universidade de Lisboa - Faculdade de Arquitetura.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós Graduação em Geografia, 2015.
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura com Especialização em Gestão Urbanística, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Arquitectura - Especialização em Urbanismo Especialização em Planeamento Urbano e Territorial, apresentada na Faculdade de Arquitectura da Universidade Técnica de Lisboa.
Resumo:
Among the potentially polluting economic activities that compromise the quality of groundwater are the gas stations. The city of Natal has about 120 gas stations, of which only has an environmental license for operation. Discontinuities in the offices were notified by the Public Ministry of Rio Grande do Norte to carry out the environmental adaptations, among which is the investigation of environmental liabilities. The preliminary and confirmatory stages of this investigation consisted in the evaluation of soil gas surveys with two confirmatory chemical analysis of BTEX, PAH and TPH. To get a good evaluation and interpretation of results obtained in the field, it became necessary three-dimensional representation of them. We used a CAD software to graph the equipment installed in a retail service station fuel in Natal, as well as the plumes of contamination by volatile organic compounds. The tool was concluded that contamination is not located in the current system of underground storage of fuel development, but reflects the historical past in which tanks were removed not tight gasoline and diesel
Resumo:
An understanding of rates and mechanisms of incision and knickpoint retreat in bedrock rivers is fundamental to perceptions of landscape response to external drivers, yet only sparse field data are available. Here we present eye witness accounts and quantitative surveys of rapid, amphitheatre-headed gorge formation in unweathered granite from the overtopping of a rock-cut dam spillway by small-moderate floods (B100–1,500m3 s�1). The amount of erosion demonstrates no relationship with flood magnitude or bedload availability. Instead, structural pattern of the bedrock through faults and joints appears to be the primary control on landscape change. These discontinuities facilitate rapid erosion (4270m headward retreat; B100m incision; and B160m widening over 6 years) principally through fluvial plucking and block topple. The example demonstrates the potential for extremely rapid transient bedrock erosion even when rocks are mechanically strong and flood discharges are moderate. These observations are relevant to perceived models of gorge formation and knickpoint retreat.
Resumo:
Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization-dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure.
Resumo:
To find examples of effecient locomotion and manoeuvrability, one need only turn to the elegant solutions natural flyers and swimmers have converged upon. This dissertation is specifically motivated by processes of evolutionary convergence, which have led to the propulsors and body shapes in nature that exhibit strong geometric collapse over diverse scales. These body features are abstracted in the studies presented herein using low-aspect-ratio at plates and a three-dimensional body of revolution (a sphere). The highly-separated vortical wakes that develop during accelerations are systematically characterized as a function of planform shape, aspect ratio, Reynolds number, and initial boundary conditions. To this end, force measurements and time-resolved (planar) particle image velocimetry have been used throughout to quantify the instantaneous forces and vortex evolution in the wake of the bluff bodies. During rectilinear motions, the wake development for the flat plates is primarily dependent on plate aspect ratio, with edge discontinuities and curvature playing only a secondary role. Furthermore, the axisymmetric case, i.e. the circular plate, shows strong sensitivity to Reynolds number, while this sensitivity quickly diminishes with increasing aspect ratio. For rotational motions, global insensitivity to plate aspect ratio has been observed. For the sphere, it has been shown that accelerations play an important role in the mitigation of flow separation. These results - expounded upon in this dissertation - have begun to shed light on the specific vortex dynamics that may be coopted by flying and swimming species of all shapes and sizes towards efficient locomotion.
Resumo:
We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.