938 resultados para Cortical bone
Resumo:
Objective Current treatments for cancer pain are often inadequate, particularly when metastasis to bone is involved. The addition to the treatment regimen of another drug that has a complementary analgesic effect may increase the overall analgesia without the necessity to increase doses, thus avoiding dose-related side effects. This project investigated the synergistic effect of the addition of the potassium channel (KCNQ2–3) modulator flupirtine to morphine treatment in a rat model of prostate cancer-induced bone pain. Design Syngeneic prostate cancer cells were injected into the right tibia of male Wistar rats under anesthesia. This led to expanding tumor within the bone in 2 weeks, together with the concurrent development of hyperalgesia to noxious heat. Paw withdrawal thresholds from noxious heat were measured before and after the maximum non-sedating doses of morphine and flupirtine given alone and in combinations. Dose-response curves for morphine (0.13–5.0 mg/kg ip) and flupirtine (1.25–10.0 mg/kg ip) given alone and in fixed-dose combinations were plotted and subjected to an isobolographic analysis. Results Both morphine (ED50 = 0.74 mg/kg) and flupirtine (ED50 = 3.32 mg/kg) caused dose-related anti-hyperalgesia at doses that did not cause sedation. Isobolographic analysis revealed that there was a synergistic interaction between flupirtine and morphine. Addition of flupirtine to morphine treatment improved morphine anti-hyperalgesia, and resulted in the reversal of cancer-induced heat hyperalgesia. Conclusions These results suggest that flupirtine in combination with morphine may be useful clinically to provide better analgesia at lower morphine doses in the management of pain caused by tumors growing in bone.
Resumo:
Objective. Leconotide (CVID, AM336, CNSB004) is an omega conopeptide similar to ziconotide, which blocks voltage sensitive calcium channels. However, unlike ziconotide, which must be administered intrathecally, leconotide can be given intravenously because it is less toxic. This study investigated the antihyperalgesic potency of leconotide given intravenously alone and in combinations with morphine-administered intraperitoneally, in a rat model of bone cancer pain. Design. Syngeneic rat prostate cancer cells AT3B-1 were injected into one tibia of male Wistar rats. The tumor expanded within the bone causing hyperalgesia to heat applied to the ipsilateral hind paw. Measurements were made of the maximum dose (MD) of morphine and leconotide given alone and in combinations that caused no effect in an open-field activity monitor, rotarod, and blood pressure and heart rate measurements. Paw withdrawal thresholds from noxious heat were measured. Dose response curves for morphine (0.312–5.0 mg/kg intraperitoneal) and leconotide (0.002–200 µg/kg intravenous) given alone were plotted and responses compared with those caused by morphine and leconotide in combinations. Results. Leconotide caused minimal antihyperalgesic effects when administered alone. Morphine given alone intraperitoneally caused dose-related antihyperalgesic effects (ED50 = 2.40 ± 1.24 mg/kg), which were increased by coadministration of leconotide 20 µg/kg (morphine ED50 = 0.16 ± 1.30 mg/kg); 0.2 µg/kg (morphine ED50 = 0.39 ± 1.27 mg/kg); and 0.02 µg/kg (morphine ED50 = 1.24 ± 1.30 mg/kg). Conclusions. Leconotide caused a significant increase in reversal by morphine of the bone cancer-induced hyperalgesia without increasing the side effect profile of either drug. Clinical Implication. Translation into clinical practice of the method of analgesia described here will improve the quantity and quality of analgesia in patients with bone metastases. The use of an ordinary parenteral route for administration of the calcium channel blocker (leconotide) at low dose opens up the technique to large numbers of patients who could not have an intrathecal catheter for drug administration. Furthermore, the potentiating synergistic effect with morphine on hyperalgesia without increased side effects will lead to greater analgesia with improved quality of life.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket related discomfort leading to a significant decrease in quality of life. Most of these concerns can be overcome by surgical techniques enabling bone-anchored prostheses. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous implant. The primary aim of this study is to present the current advances in these surgical techniques worldwide with a strong focus on the developments in Australia. The secondary aim is to provide an overview of the possible critical changes that may occurred in the world of prosthetic following these developments in bone-anchored prostheses.
Resumo:
Most surgeons cement the tibial component in total knee replacement surgery. Mid-term registry data from a number of countries, including those from the United Kingdom and Australia, support the excellent survivorship of cemented tibial components. In spite of this success, results can always be improved, and cementing technique can play a role. Cementing technique on the tibia is not standardized, and surgeons still differ about the best ways to deliver cement into the cancellous bone of the upper tibia. Questions remain regarding whether to use a gun or a syringe to inject the cement into the cancellous bone of the tibial plateau . The ideal cement penetration into the tibial plateau is debated, though most reports suggest that 4 mm to 10 mm is ideal. Thicker mantles are thought to be dangerous due to the risk of bone necrosis, but there is little in the literature to support this contention...
Resumo:
Cerebellar dysfunction has been proposed to lead to “cognitive dysmetria” in schizophrenia via the cortico-cerebellar-thalamic-cortical circuit, contributing to a range of cognitive and clinical symptoms of the disorder. Here we investigated total cerebellar grey and white matter volumes and cerebellar regional grey matter abnormalities in 13 remitted first-episode schizophrenia patients with less than 2 years’ duration of illness. Patient data were compared to 13 pair-wise age, gender, and handedness-matched healthy volunteers using cortical pattern averaging on high-resolution magnetic resonance images. Total cerebellar volume and total grey matter volumes in first-episode schizophrenia patients did not differ from healthy control subjects, but total cerebellar white matter was increased and total grey to white matter ratios were reduced in patients. Four clusters of cerebellar grey matter reduction were identified: (i) in superior vermis; (ii) in the left lobuli VI; (iii) in right-inferior lobule IX, extending into left lobule IX; and (iv) bilaterally in the areas of lobuli III, peduncle and left flocculus. Grey matter deficits were particularly prominent in right lobuli III and IX, left flocculus and bilateral pedunculi. These cerebellar areas have been implicated in attention control, emotional regulation, social functioning, initiation of smooth pursuit eye movements, eye-blink conditioning, language processing, verbal memory, executive function and the processing of spatial and emotional information. Consistent with common clinical, cognitive, and pathophysiological signs of established illness, our findings demonstrate cerebellar pathology as early as in first-episode schizophrenia.
Resumo:
During fracture healing, many complex and cryptic interactions occur between cells and bio-chemical molecules to bring about repair of damaged bone. In this thesis two mathematical models were developed, concerning the cellular differentiation of osteoblasts (bone forming cells) and the mineralisation of new bone tissue, allowing new insights into these processes. These models were mathematically analysed and simulated numerically, yielding results consistent with experimental data and highlighting the underlying pattern formation structure in these aspects of fracture healing.
Resumo:
Introduction The Global Burden of Disease Study 2010 estimated the worldwide health burden of 291 diseases and injuries and 67 risk factors by calculating disability-adjusted life years (DALYs). Osteoporosis was not considered as a disease, and bone mineral density (BMD) was analysed as a risk factor for fractures, which formed part of the health burden due to falls. Objectives To calculate (1) the global distribution of BMD, (2) its population attributable fraction (PAF) for fractures and subsequently for falls, and (3) the number of DALYs due to BMD. Methods A systematic review was performed seeking population-based studies in which BMD was measured by dual-energy X-ray absorptiometry at the femoral neck in people aged 50 years and over. Age- and sex-specific mean ± SD BMD values (g/cm2) were extracted from eligible studies. Comparative risk assessment methodology was used to calculate PAFs of BMD for fractures. The theoretical minimum risk exposure distribution was estimated as the age- and sex-specific 90th centile from the Third National Health and Nutrition Examination Survey (NHANES III). Relative risks of fractures were obtained from a previous meta-analysis. Hospital data were used to calculate the fraction of the health burden of falls that was due to fractures. Results Global deaths and DALYs attributable to low BMD increased from 103 000 and 3 125 000 in 1990 to 188 000 and 5 216 000 in 2010, respectively. The percentage of low BMD in the total global burden almost doubled from 1990 (0.12%) to 2010 (0.21%). Around one-third of falls-related deaths were attributable to low BMD. Conclusions Low BMD is responsible for a growing global health burden, only partially representative of the real burden of osteoporosis.
Resumo:
Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of tibia. Selection of the correct nail insertion point is important for axial alignment of bone fragments and to avoid iatrogenic fractures. However, the standard entry point (SEP) may not always optimise the bone-nail fit due to geometric variations of bones. This study aimed to investigate the optimal entry for a given bone-nail pair using the fit quantification software tool previously developed by the authors. The misfit was quantified for 20 bones with two nail designs (ETN and ETN-Proximal Bend) related to the SEP and 5 entry points which were 5 mm and 10 mm away from the SEP. The SEP was the optimal entry point for 50% of the bones used. For the remaining bones, the optimal entry point was located 5 mm away from the SEP, which improved the overall fit by 40% on average. However, entry points 10 mm away from the SEP doubled the misfit. The optimised bone-nail fit can be achieved through the SEP and within the range of a 5 mm radius, except posteriorly. The study results suggest that the optimal entry point should be selected by considering the fit during insertion and not only at the final position.
Resumo:
Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.
Resumo:
Iterative computational models have been used to investigate the regulation of bone fracture healing by local mechanical conditions. Although their predictions replicate some mechanical responses and histological features, they do not typically reproduce the predominantly radial hard callus growth pattern observed in larger mammals. We hypothesised that this discrepancy results from an artefact of the models’ initial geometry. Using axisymmetric finite element models, we demonstrated that pre-defining a field of soft tissue in which callus may develop introduces high deviatoric strains in the periosteal region adjacent to the fracture. These bone-inhibiting strains are not present when the initial soft tissue is confined to a thin periosteal layer. As observed in previous healing models, tissue differentiation algorithms regulated by deviatoric strain predicted hard callus forming remotely and growing towards the fracture. While dilatational strain regulation allowed early bone formation closer to the fracture, hard callus still formed initially over a broad area, rather than expanding over time. Modelling callus growth from a thin periosteal layer successfully predicted the initiation of hard callus growth close to the fracture site. However, these models were still susceptible to elevated deviatoric strains in the soft tissues at the edge of the hard callus. Our study highlights the importance of the initial soft tissue geometry used for finite element models of fracture healing. If this cannot be defined accurately, alternative mechanisms for the prediction of early callus development should be investigated.
Resumo:
Bone metastasis occurs frequently in patients with advanced breast cancer and is a major cause of morbidity and mortality in these patients. In order to advance current therapies, the mechanisms leading to the formation of bone metastases and their pathophysiology have to be better understood. Several in vitro models have been developed for systematic studies of interactions between breast cancer cells and the bone microenvironment. Such models can provide insights into the molecular basis of bone metastatic colonisation and also may provide a useful platform to design more physiologically relevant drug testing assays. This review describes different in vitro approaches and discusses their advantages and disadvantages.