817 resultados para Cooking, Korean.
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
The Principle of optical thin film was used to calculate the feasibility of improving the light extraction efficiency of GaN/GaAs optical devices by wafer-bonding technique. The calculated results show that the light extraction efficiency of bonded samples can be improved by 2.66 times than the as-grown GaN/GaAs samples when a thin Ni layer was used as adhesive layer and Ag layer as reflective layer. Full reflectance spectrum comparison shows that reflectivity for the incident light of 459.2 nm of the bonded samples was improved by 2.4 times than the as-grown samples, which is consistent with the calculated results.
Resumo:
A novel low temperature direct wafer bonding technology employing vacuum-cavity pre-bonding is proposed and applied in bonding of InGaAs/Si couple wafers under 300 degrees C and InP/GaAs couple wafers under 350 degrees C. Aligning accuracy of 0.5 mu m is achieved. During wafer bonding process the pressure on the couple wafers is 10MPa. The interface energy is sufficiently high to allow thinning of the wafers down from 350um to about 100um. And the tensile strength test indicates the bonding energy of bonded samples is about equal to the bonded samples at 550 degrees C.
Resumo:
SEED是韩国的数据加密标准,设计者称用线性密码分析攻击SEED的复杂度为2^335.4,而用本文构造的15轮线性逼近攻击SEED的复杂度为2^328.为了说明SEED抵抗差分密码分析的能力,设计者首先对SEED的变体SEED‘做差分密码分析,指出9轮SEED*对差分密码分析是安全的;利用SEED^*的扩散置换和盒子的特性,本文构造SEED^*的9轮截断差分,因此10轮SEED^*对截断差分密码分析是不免疫的.本文的结果虽然对SEED的实际应用构成不了威胁,但是显示了SEED的安全性并没有设计者所称的那样安全.
Resumo:
With naphthalene as biomass tar model compound, partial oxidation reforming (with addition of O-2) and dry reforming of biomass fuel gas were investigated over nickel-based monoliths at the same conditions. The results showed that both processes had excellent performance in upgrading biomass raw fuel gas. Above 99% of naphthalene was converted into synthesis gases (H-2+CO). About 2.8 wt% of coke deposition was detected on the catalyst surface for dry reforming process at 750 degrees C during 108 h lifetime test. However, no Coke deposition was detected for partial oxidation reforming process, which indicated that addition of O-2 can effectively prohibit the coke formation. O-2 Can also increase the CH4 conversion and H-2/CO ratio of the producer gas. The average conversion of CH4 in dry and partial oxidation reforming process was 92% and 95%, respectively. The average H-2/CO ratio increased from 0.95 to 1.1 with the addition of O-2, which was suitable to be used as synthesis gas for dimethyl ether (DME) synthesis.
Resumo:
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols and is a feedstock for production of biodiesel fuel now. The transesterification of acid oil and methanol to biodiesel was catalyzed by immobilized Candida lipase in fixed bed reactors. The reactant solution was a mixture of acid oil, water, methanol and solvent (hexane) and the main product was biodiesel composed of fatty acid methyl ester (FAME) of which the main component was methyl oleate. The effects of lipase content, solvent content, water content temperature and flow velocity of the reactant on the reaction were analyzed. The experimental results indicate that a maximum FAME content of 90.18% can be obtained in the end product under optimum conditions. Most of the chemical and physical properties of the biodiesel were superior to the standards for 0(#) diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D6751).
Resumo:
The feasibility of biodiesel production from soapstock containing high water content and fatty matters by a solid acid catalyst was investigated. Soapstock was converted to high-acid acid oil (HAAO) by the hydrolysis by KOH and the acidulation by sulfuric acid. The acid value of soapstock-HAAO increased to 199.1 mg KOH/g but a large amount of potassium sulfate was produced. To resolve the formation of potassium sulfate, acid oil was extracted from soapstock and was converted to HAAO by using sodium dodecyl benzene sulfonate (SDBS). The maximum acid value of acid oil-HAAO was 194.2 mg KOH/g when the mass ratio of acid oil, sulfuric acid, and water was 10:4:10 at 2% of SDBS. In the esterification of HAAO using Amberylst-15, fatty acid methyl ester (FAME) concentration was 91.7 and 81.3% for soapstock and acid oil, respectively. After the distillation, FAME concentration became 98.1% and 96.7% for soapstock and acid oil. The distillation process decreased the total glycerin and the acid value of FAME produced a little.
Resumo:
As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.
Resumo:
The production of biodiesel is greatly increasing due to its enviromental benefits. However, production costs are still rather high, compared to petroleum-based diesel fuel. The introduction of a solid heterogeneous catalyst in biodiesel production could reduce its price, becoming competitive with diesel also from a financial point of view. Therefore, great research efforts have been underway recently to find the right catalysts. This paper will be concerned with reviewing acid and basic heterogeneous catalyst performances for biodiesel production, examining both scientific and patent literature.
Resumo:
This paper describes an attractive method to make biodiesel from soybean soapstock (SS). A novel recovery technology of acid oil (AO) from SS has been developed with only sulfuric acid solution under the ambient temperature (25 +/- 2 degrees C). After drying, AO contained 50.0% FFA, 15.5% TAG 6.9% DAG 3.1% MAG 0.8% water and other inert materials. The recovery yield of AO was about 97% (w/w) based on the total fatty acids of the SS. The acid oil could be directly converted into biodiesel at 95 degrees C in a pressurized reactor within 5 hours. Optimal esterification conditions were determined to be a weight ratio of 1 : 1.5 : 0.1 of AO/methanol/sulfuric acid. Higher reaction temperature helps to shorten the reaction time and requires less catalyst and methanol. Ester content of the biodiesel derived from AO through one-step acid catalyzed reaction is around 92%. After distillation, the purity of the biodiesel produced from AO is 97.6% which meets the Biodiesel Specification of Korea. The yield of purified biodiesel was 94% (w/w) based on the total fatty acids of the soapstock.
Resumo:
Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.
Resumo:
Silicon-on-insulator (SOI) has been recognized as a promising semiconductor starting material for ICs where high speed and low power consumption are desirable, in addition to its unique applications in radiation-hardened circuits. In the present paper, three novel SOI nano-layer structures have been demonstrated. ULTRA-THIN SOI has been fabricated by separation by implantation of oxygen (SIMOX) technique at low oxygen ion energy of 45 keV and implantation dosage of 1.81017/cm2. The formed SOI layer is uniform with thickness of only 60 nm. This layer is of crystalline quality. and the interface between this layer and the buried oxide layer is very sharp, PATTERNED SOI nanostructure is illustrated by source and drain on insulator (DSOI) MOSFETs. The DSOI structure has been formed by selective oxygen ion implantation in SIMOX process. With the patterned SOI technology, the floating-body effect and self-heating effect, which occur in the conventional SOI devices, are significantly suppressed. In order to improve the total-dose irradiation hardness of SOI devices, SILICON ON INSULATING MULTILAYERS (SOIM) nano-structure is proposed. The buried insulating multilayers, which are composed of SiOx and SiNy layers, have been realized by implantation of nitride and oxygen ions into silicon in turn at different ion energies, followed by two steps of high temperature annealing process, respectively, Electric property investigation shows that the hardness to the total-dose irradiation of SOIM is remarkably superior to those of the conventional SIMOX SOI and the Bond-and-Etch-Back SOI.
Resumo:
The Principle of optical thin film was used to calculate the feasibility of improving the light extraction efficiency of GaN/GaAs optical devices by wafer-bonding technique. The calculated results show that the light extraction efficiency of bonded samples can be improved by 2.66 times than the as-grown GaN/GaAs samples when a thin Ni layer was used as adhesive layer and Ag layer as reflective layer. Full reflectance spectrum comparison shows that reflectivity for the incident light of 459.2 nm of the bonded samples was improved by 2.4 times than the as-grown samples, which is consistent with the calculated results.
Resumo:
CdS/ZnS core/shell nanocrystals were prepared from an aqueous/alcohol medium. A red shift of the absorption spectrum and an increase of the room temperature photoluminescence intensity accompanied shell growth.
Resumo:
森林群落中物种是怎样分布的?各物种是如何共存于同一群落中的?物种的分布格局是如何随尺度变化的?哪些过程影响了物种的空间分布格局?森林群落中是否存在着强烈的种内或者种间竞争?是机会还是竞争在构建森林群落中起着更为重要的作用?这些问题的回答,对于我们了解森林群落的结构特征及其内在的生态学过程、揭示物种多样性维持和共存机制具有极其重要的意义。本论文以长白山阔叶红松林25 ha大型固定样地为研究平台,基于第一次样地调查数据,采用不同的空间格局分析方法,从不同的研究角度,对阔叶红松林的群落组成与结构特征、空间格局、种间关系、密度制约机制、物种共有度格局等进行了较详尽的研究。主要研究结论如下: 1) 样地内胸径≥1cm的木本植物共18科32属52种。总的独立个体数为38902,包括分枝的总个体数为59121。个体数最多的前3个种的个体数占总个体数的60%,前14个种占95%,而其余38个种仅占5%。从物种多度、胸高断面积、平均胸径和重要值来看,群落成层现象显著,具有明显的优势种。 2) 对树种空间分布格局的分析发现:树种的空间分布格局随树种、径级、垂直高度、空间尺度的变化表现出不同的分布格局;大多数树种在较小的空间尺度上是聚集的,聚集程度随林层的增高而降低,而在较大的空间尺度则主要表现为规则或者随机分布;小树在小尺度上表现出不同程度的聚集;一些树种的分布格局表现出一定的空间异质性。 3) 对树种的种间相关性分析发现:树种的种间相关性随树种、径级、垂直高度、空间尺度而变化;红松与紫椴在整体上表现为正相关,但并不是在各林层间都表现为正相关;红松和紫椴的幼树和小树大多聚集在母树的周围,蒙古栎和水曲柳的幼树和小树在母树周围分布较少;对不同树种在不同径级和垂直层的空间相关性的分析发现,蒙古栎和水曲柳多分布在光环境比较好的地方,而红松和紫椴这两个耐阴树种则分布在郁闭的冠层下,表明不同的物种具有不同的生境要求以满足其存活和建成的需求;通过比较6个个体数差异极大的槭属树种的种群结构、空间格局和空间相关性等发现,15个物种对中的7个物种对不存在明显的相关性,不同径级的物种对之间的比较也没有发现明显的相关性,即它们之间并不存在明显的种间竞争。 4) 分析密度制约机制对树木存活的影响,可以发现:死亡前树种的格局大多是比死亡后更加聚集的;对于死亡后存活树木的格局,5个主林层树种中的3个和8个次林层和林下层树种中的3个树种的死亡都是随机的,8个次林层和林下层树种中的5个表现出正的密度制约存活;13个树种中的9个树种的存活与其自身的胸高断面积负相关,表明在大树之间存在着强烈的种内或种间竞争;主林层树种存活与近邻距离内同种的个体数没有明显相关性,而次林层和林下层树种的存活与近邻距离内同种的个体数大多呈正相关;大多数树种的存活与同种的胸高断面积表现出负相关,表明了强烈的种内竞争的存在,树木个体的大小对种内竞争的贡献要远远大于该树种种群的密度。 5) 对物种共有度格局的分析发现:阔叶红松林群落在小的空间尺度上出现了较少的物种共有度格局,表明也许存在强烈的种间竞争;而在较大尺度上,基于群落等级、个体数较多的物种组和径级较大的物种组的分析,都出现了随机的物种共有度格局,表明在较大的尺度上并不存在明显地影响物种分布的生态学过程;基于系统发生的物种组的物种共有度格局明显地不同于群落等级的物种共有度格局,在系统发生的物种组内,没有发现种间竞争的证据,而在小尺度上却存在正的种间相关性。 6) 从不同角度对物种分布格局的分析可以看出,森林群落结构与空间尺度是密切相关的。树种的空间分布格局随尺度而变化,在一个尺度上表现为一种格局,而在另一个尺度上则可能表现为另一种不同的格局。种内和种间相关性的分析也在不同的空间尺度上表现出不同的空间相关性。