980 resultados para COHERENT TIMING SOLUTION
Resumo:
Il faut distinguer timing pubertaire objectif (TPO ; comparaison du timing pubertaire réel d'un sujet avec celui d'un groupe de référence) et timing pubertaire subjectif (TPS ; perception subjective par le sujet de son timing pubertaire par rapport à celui de ses pairs). Chez l'adolescente, la ménarche est couramment utilisée comme marqueur du TPO. La littérature s'intéressant aux variations physiologiques (normales) du timing pubertaire montre qu'un TPO précoce est corrélé chez les adolescentes avec de nombreux problèmes de santé (p.ex. dépression, abus de substances, comportements à risques, niveau d'études inférieur). Un TPO tardif chez l'adolescente serait quant à lui associé à une meilleure réussite scolaire. Les diverses hypothèses expliquant ces corrélations sont brièvement décrites dans notre travail. Certaines hypothèses impliquent des facteurs objectifs tels les changements du corps à la puberté, alors que d'autres privilégient des facteurs plus subjectifs, dans le registre de la perception de soi. A ce jour, la littérature ne s'est que très peu intéressée au TPS en soi. Une adolescente percevant son timing pubertaire comme précoce est-elle à risque même si sa puberté survient objectivement au même âge que la majorité de ses pairs ? L'objectif de ce travail est de rechercher d'éventuelles corrélations entre TPS et adoption de comportements à risque chez des adolescentes rapportant un TPO dans la moyenne. Nos données proviennent de l'enquête SMASH 2002, une étude par questionnaire auto-administré conduite parmi un échantillon de 7548 adolescentes et adolescents suisses âgés de 16-20 ans. Des 3658 adolescentes de l'échantillon initial, nous ne sélectionnons que les 1003 d'entre elles qui ont répondu à la question sur le TPS et qui ont rapporté un âge à la ménarche de 13 ans, soit la moyenne et la médiane de l'âge à la ménarche rapporté par les 3658 adolescentes de l'échantillon initial. Ces 1003 adolescentes sélectionnées sont considérées comme ayant un TPO dans la moyenne. Ces 1003 adolescentes sont séparées en 3 groupes en fonction de leur TPS (précoce/correspondant à la moyenne/tardif). A l'aide d'analyses bivariées et logistiques, nous comparons ces 3 groupes en termes d'adoption de comportements à risque dans le champ de la sexualité (précocité des rapports sexuels) et dans celui de la consommation de substances (tabac, cannabis, drogues dures). Nos résultats montrent principalement qu'une perception de précocité pubertaire est associée avec une précocité des premiers rapports sexuels et de l'usage de drogues dures. A l'inverse, les adolescentes percevant leur puberté comme tardive rapportent moins fréquemment des rapports sexuels avant 16 ans que les adolescentes percevant leur puberté comme dans la moyenne. Les implications cliniques sont les suivantes : face à une adolescente percevant sa puberté comme étant ou ayant été précoce, le praticien devrait investiguer l'existence de comportements à risque même si la puberté survient ou est survenue à un âge similaire à ce qui est retrouvé chez la majorité des pairs. En effet, notre étude suggère que même si cette adolescente se trompe en percevant sa puberté comme précoce, la probabilité de comportements à risque est augmentée dans le champ de la sexualité et de la consommation de substances. Nos résultats suggèrent aussi que l'association retrouvée dans la littérature entre précocité objective de la puberté et comportements à risque chez les adolescentes n'est pas uniquement médiée par les changements corporels pubertaires mais qu'un facteur psychologique tel que la perception subjective est également impliqué.
Resumo:
This thesis studies forming a complete solution concept for tap water systems in project business environment. The aim of the study is to find tools and means for the target company to determine the scope of their tap water solution offering and to research what kind of organizational capabilities and resources are needed to supply such system solutions. With the help of literature, the characteristics of systems selling and project business and thematics of systems integration and integrated solutions are examined, and the significance of modularity and customer requirements in the given operational environment is discussed. After this, a checklist tool for customer requirements management is developed for the tap water system along with a module allocation method. The study proposes that with the checklist and module allocation the technical specifications can be extensively and innovatively defined for the system. The tools developed are a part of a complete tap water solution concept, which suggests that integrated solutions might constitute possibilities for the company to outperform its competitors when the traditional business methods of the industry are becoming obsolete.
Resumo:
In this work we report the obtention of a tetrabutylammonium hydroxide (TBAOH) solution in acetonitrile in a one pot process in order to study the interaction ironporphyrinOH- in non-aqueous systems. All the reactions were carried out under dry argon atmosphere to prevent the contamination of the solution with CO2, which leads to the formation of (TBA)2CO3.
Resumo:
Complexation between acyclovir (ACV), an antiviral drug used for the treatment of herpes simplex virus infection, and beta-cyclodextrin (beta-CD) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (¹H-NMR). In the solid state, X-ray diffraction, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and dissolution studies were used. Solubility studies suggested the existence of a 1:1 complex between ACV and beta-CD. ¹H-NMR spectroscopy studies showed that the complex formed occurs with a stoichiometry ratio of 1:1. Powder X-ray diffraction indicated that ACV exists in a semicrystalline state in the complexed form with beta-CD. DSC studies showed the existence of a complex of ACV with beta-CD. The TGA studies confirmed the DSC results of the complex. Solubility of ACV in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.
Resumo:
The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions.
Resumo:
Some of the world’s leading companies now compete by providing integrated solutions to identify and solve each customer’s business problem by providing services to design, integrate, operate and finance a product or system during its life cycle. At the same time, because of the requirements of new global economy, companies are implementing new integrated ERP systems. The objective of this thesis was to define how solution offering can be implemented in the integrated ERP system so that it is possible to sell, deliver and maintain solution offering with the new enterprise applications. The research was conducted as a qualitative case study research consisting of literature review, theme-interviews and an analysis phase. For a start this study introduces new insight for combining solution business, offering modeling and modern ERP system theories. The results of this research illustrate the limitations of an integrated ERP system to support solution business and show the need to develop a commercial product model in order to improve the combination of solution offering and IT systems.
Resumo:
This article is the result of an ongoing research into a variety of features of Spanish local government. It aims, in particular, at providing a profile of the tools implemented by local authorities to improve local democracy in Catalonia. The main hypothesis of the work is that, even though the Spanish local model is constrained by a shared and unique set of legal regulations, local institutions in Catalonia have developed their own model of local participation. And the range of instruments like these is still now increasing. More specifically, the scope of this research is twofold. On the one hand, different types of instruments for public deliberation in the Catalan local administration system are identified and presented, based on the place they take in the policy cycle. On the other hand, we focus on policy domains and the quality of the decision-making processes. Researching the stability of the participation tools or whether local democracy prefers more 'ad hoc' processes allows us to analyze the boundaries/limits of local democracy in Catalonia. The main idea underlying this paper is that, despite the existence of a single legal model regulating municipalities in Catalonia, local authorities tend to use their legally granted selfmanagement capacities to design their own instruments which end up presenting perceivable distinct features, stressing democracy in different policy domains, and in diverse policy cycles. Therefore, this paper is intended to identify such models and to provide factors (variables) so that an explanatory model can be built.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.
Resumo:
A detailed NMR (¹H , COSY, ROESY) spectroscopic study of complexation of enalapril maleate with beta-cyclodextrin was carried out. The ¹H NMR spectrum of enalapril maleate confirmed the existence of cis-trans equilibrium in solution, possibly due to hindered rotation along the amide bond. The cis-trans ratio remained almost the same in the presence of beta-cyclodextrin but in one case it was found significantly different which suggests a catalytic role of beta-cyclodextrin in the isomerization. ¹H NMR titration studies confirmed the formation of an enalapril-beta-cyclodextrin inclusion complex as evidenced by chemical shift variations in the proton resonances of both the host and the guest. The stoichiometry of the complex was determined to be 2:1 (guest: host). The mode of penetration of the guest into the beta-cyclodextrin cavity as well as the structure of the complex were established using ROESY spectroscopy.
Resumo:
This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes
Resumo:
Recently, it has been shown that the speed of virus infections can be explained by time-delayed reactiondiffusion [J. Fort and V. Me´ndez, Phys. Rev. Lett. 89, 178101 (2002)], but no analytical solutions were found. Here we derive formulas for the front speed, valid in appropriate limits. We also integrate numerically the evolution equations of the system. There is good agreement with both numerical and experimental speeds
Resumo:
In many industries, such as petroleum production, and the petrochemical, metal, food and cosmetics industries, wastewaters containing an emulsion of oil in water are often produced. The emulsions consist of water (up to 90%), oils (mineral, animal, vegetable and synthetic), surfactants and other contaminates. In view of its toxic nature and its deleterious effects on the surrounding environment (soil, water) such wastewater needs to be treated before release into natural water ways. Membrane-based processes have successfully been applied in industrial applications and are considered as possible candidates for the treatment of oily wastewaters. Easy operation, lower cost, and in some cases, the ability to reduce contaminants below existing pollution limits are the main advantages of these systems. The main drawback of membranes is flux decline due tofouling and concentration polarisation. The complexity of oil-containing systems demands complementary studies on issues related to the mitigation of fouling and concentration polarisation in membranebased ultrafiltration. In this thesis the effect of different operating conditions (factors) on ultrafiltration of oily water is studied. Important factors are normally correlated and, therefore, their effect should be studied simultaneously. This work uses a novel approach to study different operating conditions, like pressure, flow velocity, and temperature, and solution properties, like oil concentration (cutting oil, diesel, kerosene), pH, and salt concentration (CaCl2 and NaCl)) in the ultrafiltration of oily water, simultaneously and in a systematic way using an experimental design approach. A hypothesis is developed to describe the interaction between the oil drops, salt and the membrane surface. The optimum conditions for ultrafiltration and the contribution of each factor in the ultrafiltration of oily water are evaluated. It is found that the effect on permeate flux of the various factors studied strongly depended on the type of oil, the type of membrane and the amount of salts. The thesis demonstrates that a system containing oil is very complex, and that fouling and flux decline can be observed even at very low pressures. This means that only the weak form of the critical flux exists for such systems. The cleaning of the fouled membranes and the influence of different parameters (flow velocity, temperature, time, pressure, and chemical concentration (SDS, NaOH)) were evaluated in this study. It was observed that fouling, and consequently cleaning, behaved differently for the studied membranes. Of the membranes studied, the membrane with the lowest propensity for fouling and the most easily cleaned was the regenerated cellulose membrane (C100H). In order to get more information about the interaction between the membrane and the components of the emulsion, a streaming potential study was performed on the membrane. The experiments were carried out at different pH and oil concentration. It was seen that oily water changed the surface charge of the membrane significantly. The surface charge and the streaming potential during different stages of filtration were measured and analysed being a new method for fouling of oil in this thesis. The surface charge varied in different stages of filtration. It was found that the surface charge of a cleaned membrane was not the same as initially; however, the permeability was equal to that of a virgin membrane. The effect of filtration mode was studied by performing the filtration in both cross-flow and deadend mode. The effect of salt on performance was considered in both studies. It was found that salt decreased the permeate flux even at low concentration. To test the effect of hydrophilicity change, the commercial membranes used in this thesis were modified by grafting (PNIPAAm) on their surfaces. A new technique (corona treatment) was used for this modification. The effect of modification on permeate flux and retention was evaluated. The modified membranes changed their pore size around 33oC resulting in different retention and permeability. The obtained results in this thesis can be applied to optimise the operation of a membrane plant under normal or shock conditions or to modify the process such that it becomes more efficient or effective.
Resumo:
A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS) micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.
Resumo:
Apparent thermodynamic functions, Gibbs energy, enthalpy and entropy of solution and mixing, for methocarbamol in ethanol + water mixtures, were evaluated from solubility data determined at temperatures from 293.15 K to 313.15 K and from calorimetric values of drug fusion. The drug solubility was greatest in the mixtures with 0.70 or 0.80 mass fraction of ethanol and lowest in neat water across all temperatures studied. Non-linear enthalpy-entropy compensation was found for the dissolution processes. Accordingly, solution enthalpy drives the respective processes in almost all the solvent systems analyzed.