981 resultados para upper thermal tolerance
Resumo:
The study investigated variation in the ways in which a group of students and teachers of Evangelical Lutheran religious education in Finnish upper secondary schools understand Lutheranism and searched for educational implications for learning in religious education. The aim of understanding the qualitative variation in understanding Lutheranism was explored through the relationship between the following questions, which correspond to the results reported in the following original refereed publications: 1) How do Finnish students understand Lutheranism? 2) How do Finnish teachers of religious education constitute the meaning of Lutheranism? 3) How could phenomenography and the Variation Theory of Learning contribute to learning about and from religion in the context of Finnish Lutheran Religious Education as compared to religious education in the UK? Two empirical studies (Hella, 2007; Hella, 2008) were undertaken from a phenomenographic research perspective (e.g., Marton, 1981) and the Variation Theory of Learning (e.g., Marton & Tsui et al. 2004) that developed from it. Data was collected from 63 upper secondary students and 40 teachers of religious education through written tasks with open questions and complementary interviews with 11 students and 20 teachers for clarification of meanings. The two studies focused on the content and structure of meaning discernment in students and teachers expressed understandings of Lutheranism. Differences in understandings are due to differences in the meanings that are discerned and focused on. The key differences between the ways students understand varied from understanding Lutheranism as a religion to personal faith with its core in mercy. The logical relationships between the categories that describe variation in understanding express a hierarchy of ascending complexity, according to which more developed understandings are inclusive of less developed ones. The ways the teachers understand relate to student s understandings in a sequential manner. Phenomenography and Variation Theory were discussed in the context of religious education in Finland and the UK in relation to the theoretical notion of learning about and from religion (Hella & Wright, 2008). The thesis suggests that variation theory enables religious educators to recognise the unity of learning about and from religion, as learning is always learning about something and involves simultaneous engagement with the object of learning and development as a person. The study also suggests that phenomenography and variation theory offer a means by which it is possible for academics, policy makers, curriculum designers, teachers and students to learn to discern different ways of understanding the contested nature of religions. Keywords: Lutheranism, understanding, variation, teaching, learning, phenomenography, religious education
Resumo:
The heat capacity Cp of the binary liquid system CS2 + CH3CN has been studied. This system has an upper critical solution temperature To ≈ 323.4 K and a critical mole fraction of CS2xo ≈ 0.5920. Measurements were made both for mixtures close to and far away from the critical region. The heat capacity of the mixture with x = xo exhibits a symmetric logarithmic anomaly around Tc, which is apparently preserved even for compositions in the immediate vicinity of xc. For compositions far away from xc, only a normal rise in Cp over the covered temperature range is observed.
Resumo:
Hydrazinium monoperchlorate (HP-1) has been shown to decompose thermally in the solid state according to the chemical equation: 5N2H5CIO4 = 4NH4CIO4+1HCI+3N2+4H2O The activation energy for the evolution of HCl as determined mass spectrometrically is 8.05 kcal mol−1 in the temperature range of 80 to 120°C. The rate of decomposition is seen to be altered by doping HP-1 with small concentrations of SO2−4, Ca2+ and Al3+.
Resumo:
Abstract is not available.
Resumo:
The thermal decomposition of ammonium perchlorate based solid composite propellant using carboxyl terminated polybutadiene as binder has been studied employing thermogravimetry and differential thermal analysis techniques. The thermal decomposition characteristics of the propellant have been found to be quite similar to those of pure ammonium perchlorate with activation energy, 32 Kcal/mole and 60 Kcal/mole respectively in the low and high temperature regions. The effect of the sample size and shape on the thermal decomposition has also been evaluated.
Resumo:
Kinetics of the thermal decomposition of barium titanyl oxalate have been studied. Decomposition of the anhydrous oxalate is complex and deceleratory throughout. Kinetics of decomposition of the intermediate carbonate Ba2Ti2O5CO3 is greatly influenced by the thermal effects during its formation. The sigmoidal (α, t) curves obey a power law equation followed by first order decay. Presence of carbon in the vacuum prepared carbonate has a strong deactivating effect. Decomposition of the carbonate is accompanied by growth in particle size of the product, barium titanate.
Resumo:
Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had difuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No diferences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with difuse complications, mean temperature diferences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or difuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings.
Resumo:
Mössbauer-effect and X-ray studies were carried out on the product samples of the thermogravimetric analysis (TGA) and of the isothermal decomposition of iron(II) oxalate in flowing H2. Two types of sample configurations were employed for isothermal studies between 280 to 420°C for various periods of heating. Low temperature Mossbauer measurements at liquid nitrogen temperature were carried out to examine the superparamagnetic (SPM) contributions. From the spectra of samples decomposed at 340°C, in vertical experiments, the percentage SPM and percentage ferromagnetic (FM) area of Fe3O4 were estimated and an average size (˜167Å) for Fe3O4 was derived. Mossbauer measurements (at high temperatures) were carried out on Fe3C formed in horizontal experiments, for two samples decomposed at ˜320°C for 1 hr and 2 hr. An estimate of SPM and FM Fe3C was obtained by calculating KV, the anisotropy energy for the Fe3C in these two samples and values of 5.07 × 10−16 and 7.02 × 10−16 erg/sec, respectively, were obtained.
Resumo:
The thermal decomposition of methylammonium perchlorate (MAP) has been studied under isothermal and non-isothermal conditions. Differential thermal analysis of MAP showed, in addition to the exotherm due to decomposition, another exotherm at 408° which was observed for the first time. Chemical analysis and the infrared spectrum of the residue left behind after the decomposition proved it to contain NH4ClO4. The results have been explained on the basis of a methyl group transfer in addition to proton transfer in the decomposition process.
Resumo:
The thermal decomposition of sodium azide has been investigated in the temperature range 240–365°C. Three values for the activation energy, 37.0, 59.0 and 14 kcal mol−1 have been obtained depending on the temperature range of study. The mechanism of decomposition seems to involve excited azide ions (through internal conversion) and excitations. The activation energy of 14 kcal mol−1 appears to be associated with the promotion of electron in the presence of sodium metal.
Resumo:
The importance of the study of thermal degradation of polymeric fuels arises from their role in the combustion of solid propellants. Estimation of the condensed-phase heat release during combustion can be facilitated by the knowledge of the enthalpy change associated with the polymer degradation process. Differential scanning calorimetry has been used to obtain enthalpy data. Kinetic studies on the polymeric degradation process have been carried out with the following objectives. The literature values of activation energies are quite diverse and differ from author to author. The present study has tried to locate possible reasons for the divergence in the reported activation energy values. A value of 30 kcal has been obtained and found to be independent of the technique employed. The present data on the kinetics support to chain-end initiation and unzipping process. The activation energies are further found to be independent of the atmosphere in which the degradation of polymer fuel is carried out. The degradation in air, N2, and O2 all yield a value of 30 kcal/mole for the activation energies.
Resumo:
Thermal decomposition of barium titanyl oxalate tetrahydrate (BTO) has been investigated employing TGA, DTG and DTA techniques and gas and chemical analysis. The decomposition proceeds through five steps and is not affected much by the surrounding gas atmosphere. The first step which is the dehydration of the tetrahydrate is followed by a low-temperature decomposition of the oxalate groups. In the temperature range 190–250°C half a mole of carbon monoxide is evolved with the formation of a transient intermediate containing both oxalate and carbonate groups. The oxalate groups are completely destroyed in the range 250–450°C, resulting in the formation of a carbonate which retains free carbon dioxide in the matrix. The trapped carbon dioxide is released in the temperature range of 460–600°C. The final decomposition of the carbonate takes place between 600–750°C and yields barium titanate. The i.r. spectra, surface area measurements and X-ray, powder diffraction data support entrapment of carbon dioxide in the matrix.
Resumo:
The role of thermal decomposition of the binder and the oxidiser in the thermal decomposition, ageing and combustion of composite solid-propellants has been investigated. The present study shows that the burning rate and ageing of polystyrene and ammonium perchlorate propellant are related to the thermal decomposition of the propellant itself and ammonium perchlorate.