905 resultados para tin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ powder X-ray diffraction (XRD) studies on 3D micro-crystalline tin (II) sulfide (SnS) were carried out at different temperatures. While increasing temperature, the crystal structure of SnS remains stable as orthorhombic, whereas its lattice parameters and unit-cell volume are considerably varied. Further, these 3D micro-crystalline structures have showed a negative thermal expansion along the a-axis and positive expansion along the b- and c-axes. However, the overall drop along the a-axis of SnS crystals is nearly equal to their expansion along the c-axis. The observed changes in the structural properties of SnS micro-crystallites with temperature are discussed and reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of chemical treatment on the surface morphology and other physical properties of tin monosulphide (SnS) thin films have been investigated. The SnS films treated with selected organic solvents exhibited strong improvement in their crystalline-quality and considerable decrease in electrical resistivity. Particularly, the films treated with chloroform showed very low electrical resistivity of similar to 5 Omega cm and a low optical band gap of 1.81 eV as compared to untreated and treated SnS films with other chemicals. From these studies we realized that the chemical treatment of SnS films has strong impact on their surface morphology and also on other physical properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, Tin oxide (SnO2) multiple branched nanowires (NWs) have been synthesized by thermal evaporation of tin (Sn) in presence of oxygen without use of metal catalysts at low substrate temperature of 500 degrees C. Synthesized product consists of multiple branched nanowires and were single crystalline in nature. Each of the nanowire capped with catalyst particle at their ends. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirms that Sn act as catalyst for SnO2 nanowires growth. A self catalytic vapor-liquid-solid (VLS) growth mechanism was proposed to describe the SnO2 nanowires growth. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, high quality tin oxide (SnO2) nanowires have been synthesized at a low substrate temperature of 450 degrees C via vapor-liquid-solid mechanism using an electron beam evaporation technique. The grown nanowires have shown length of 2-4 mu m and diameter of 20-60 nm. High resolution transmission electron microscope studies on the grown nanowires have shown the single crystalline nature of the SnO2 nanowires. We investigated the effect of growth temperature and oxygen partial pressure on SnO2 nanowires growth. Variation of substrate temperature at a constant oxygen partial pressure of 4 x 10(-4) mbar suggested that a temperature equal to or greater than 450 degrees C was the best condition for phase pure SnO2 nanowires growth. The SnO2 nanowires grown on a SiO2 substrate were subjected to UV photo detection. The responsivity and quantum efficiency of SnO2 NWs photo detector (at 10V applied bias) was 12 A/W and 45, respectively, for 12 mu W/cm(2) UV lamp (330 nm) intensity on the photo detector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly stable, branched gold nanoworms are formed spontaneously in an acetamide-based room temperature molten solvent without any additional external stabilizing or aggregating agent. The nanoworms can be anchored onto solid substrates such as indium tin oxide (ITO) without any change in morphology. The anchored nanoworms are explored as substrates for surface enhanced Raman scattering (SERS) studies using non-fluorescent 4-mercaptobenzoic acid (4-MBA) and fluorescent rhodamine 6G (R6G) as probe molecules. The anchored nanostructured particles respond to near IR (1064 nm) as well as visible (785, 632.8 and 514 nm) excitation lasers and yield good surface enhancement in Raman signals. Enhancement factors of the order 10(6)-10(7) are determined for the analytes using a 1064 nm excitation source. Minimum detection limits based on adsorption from ethanolic solutions of 1028 M 4-MBA and aqueous solutions of 1027 M R6G are achieved. Experimental Raman frequencies and frequencies estimated by DFT calculations are in fairly good agreement. SERS imaging of the nanostructures suggests that the substrates comprising of three dimensional, highly interlinked particles are more suited than particles fused in one dimension. The high SERS activity of the branched nanoworms may be attributed to both electromagnetic and charge transfer effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 10(2) Omega cm at higher temperature (170 degrees C) and 10(3) Omega cm at lower temperature (30 degrees C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV-vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we have demonstrated the influence of growth-temperature on the morphology and orientation of SnS films deposited by thermal evaporation technique. While increasing the growth-temperature, the morphology of SnS films changed from flakes-like nanocrystals to regular cubes, whereas their orientation shifted from <111> to <040> direction. The chemical composition of SnS films gradually changed from sulfur-rich to tin-rich with the increase of growth-temperature. The structural analyzes reveal that the crystal structure of SnS films probably changes from orthorhombic to tetragonal at the growth-temperature of about 410 degrees C. Raman studies show that SnS films grown at all temperatures consist of purely SnS phase, whereas the optical studies reveal that the direct optical bandgap of SnS films decreased with the increase of growth-temperature. From these results it has been emphasized that the morphology and orientation along with electrical and optical properties of nearly stoichiometric SnS films strongly depend on their growth-temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimony doped tin oxide (Sb:SnO2) nanowires were grown by thermal and e-beam assisted co-evaporation of Sb and Sn in the presence of oxygen at a low substrate temperature of 450 degrees C. The field emission scanning electron microscopy study revealed that the nanowires had a length and diameter of 2-4 mu m and 20-60 nm respectively. Transmission electron microscopy study revealed the single crystalline nature of the nanowires; energy dispersive X-ray spectroscopy (EDS) and EDS mapping on the nanowires confirmed the presence of Sb doping in the nanowires. UV light detection study on the doped SnO2 nanowire films exhibited fast response and recovery time compared to undoped SnO2 nanowire films. This is an innovative and simple method to grow doped SnO2 nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline tin sulfide thin films were prepared by thermal evaporation technique. The films grown at substrate temperature of 300 degrees C had an orthorhombic crystal structure with strong preferred orientation along (111) plane. Electrical resistivity of the deposited films was about 32.5 Omega cm with a direct optical band gap of 1.33 eV. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 6.24 x 10(15) cm(-3) and 30.7 cm(2)V(-1) s(-1) respectively. Heterojunction solar cells were fabricated in superstrate configuration using thermally evaporated SnS as an absorber layer and CdS, In: CdS as window layer. The resistivity of pure CdS thin film of a thickness of 320 nm was about 1-2 Omega cm and was reduced to 40 x 10(-3) Omega cm upon indium doping. The fabricated solar cells were characterized using solar simulator. The solar cells with indium doped CdS window layer showed improved performance as compared to pure CdS window layer. The best device had a conversion efficiency of 0.4% and a fill factor of 33.5%. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinary chalcogenide compounds Cu2.1Zn0.9Sn1-xInxSe4 (0 <= x <= 0.1) were prepared by melting (1170K) followed by annealing (773 K) for 172 h. Powder X-ray diffraction (XRD) data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples confirmed the formation of a tetragonal kesterite structure with Cu2FeSnS4-type. The thermoelectric properties of all the samples were measured as a function of temperature in the range of 300-780K. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The codoping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper/zinc and indium/tin substitution. Even though, the power factors (S-2/rho) of indium-doped samples Cu2.1Zn0.9Sn1-xInxSe4 (x = 0.05, 0.075) are almost the same, the maximum zT = 0.45 at 773K was obtained for Cu2.1Zn0.9Sn0.925In0.075Se4 due to its smaller value of thermal conductivity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contact behavior of tin mono sulfide (SnS) nanocrystalline thin films with zinc (Zn) and silver (Ag) contacts was studied. SnS films have been deposited on glass substrates by thermal evaporation technique at a growth temperature of 300 degrees C. The as-grown SnS films composed of vertically aligned nanocrystallites with a preferential orientation along the < 010 > direction. SnS films exhibited excellent chemical stoichiometry and direct optical band gap of 1.96 eV. These films also exhibited excellent Ohmic characteristics and low electrical resistivity with Zn contacts. The observed electrical resistivity of SnS films with Zn contacts is 22 times lower than that of the resistivity with Ag contacts. The interfacing analysis reveals the formation of conductive Zn-S layer between SnS and Zn as interfacial layer. (C) 2014 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TIN thin films with (200) fibre texture are deposited on Cu substrate at room temperature using reactive magnetron sputtering. They exhibit a discharge capacity of 172 mu Ah cm(-2) mu m(-1) (300 mAh g(-1)) in a non-aqueous electrolyte containing a Li salt. There is a graded decrease in discharge capacity when cycled between 0.01 and 3.0 V. Electron microscopy investigations indicate significant changes in surface morphology of the cycled TiN electrodes in comparison with the as deposited TiN films. From XPS depth profile analysis, it is inferred that Li intercalated TIN films consist of lithium compounds, hydroxyl groups, titanium sub oxides and TiN. Lithium diffusivity and reactivity decrease with increase in depth and the major reaction with lithium takes place at film surface and grain boundaries. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stoichiometric tin (II) sulfide (SnS) nano-structures were synthesized on SnS(010)/glass substrates using a simple and low-temperature chemical solution method, and their physical properties were investigated. The as-synthesized SnS nanostructures exhibited orthorhombic crystal structure and most of the nanocrystals are preferentially oriented along the <010> direction. These nanostructures showed p-type electrical conductivity and high electrical resistivity of 93 Omega cm. SnS nanostructures exhibited a direct optical band gap of 1.43 eV. While increasing the surrounding temperature from 20 to 150 degrees C, the electrical resistivity of the structures decreased and exhibited the activation energy of 0.28 eV.