960 resultados para thin film structure
Resumo:
An attempt has been made to unequivocally identify the influence that inhomogeneous strain fields, surrounding point defects, have on the functional properties of thin film ferroelectrics. Single crystal thin film lamellae of BaTiO3 have been integrated into capacitor structures, and the functional differences between those annealed in oxygen and those annealed in nitrogen have been mapped. Key features, such as the change in the paraelectric-ferroelectric phase transition from first to second order were noted and found to be consistent with mean field modeling predictions for the effects of inhomogeneous strain. Switching characteristics appeared to be unaffected, suggesting that point defects have a low efficacy in domain wall pinning.
Resumo:
A new method for catalyst deposition on the inner walls of capillary microreactors is proposed which allows exact control of the coating thickness, pore size of the support, metal particle size, and metal loading. The wall-coated microreactors have been tested in a selective hydrogenation reaction. Activity and selectivity reach values close to those obtained with a homogeneous Pd catalyst. The catalyst activity was stable for a period of 1000 h time-on-stream.
Resumo:
We review the design and fabrication of thin-film composite optical waveguides (OWG) with high refractive index for sensor applications. A highly sensitive optical sensor device has been developed on the basis of thin-film, composite OWG. The thin-film OWG was deposited onto the surface of a potassium-ion-exchanged (K+) glass OWG by sputtering or spin coating (5-9 mm wide, and with tapers at both ends). By allowing an adiabatic transition of the guided light from the secondary OWG to the thin-film OWG, the electric field of the evanescent wave at the thin film was enhanced. The attenuation of the guided light in the thin film layer was small, and the guided light intensity changed sensitively with the refractive index of the cladding layer. Our experimental results demonstrate that thin-film, composite OWG gas sensors or immunosensors are much more sensitive than sensors based on other technologies. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Robust thin-film oxygen sensors were fabricated by encapsulating a lipophilic, polynuclear gold(I) complex, bis{m-(bis(diphenylphosphino)octadecylamine-P,P')}dichlorodigold(I), in oxygen permeable polystyrene and ormosil matrices. Strong phosphorescence, which was quenched by gaseous and dissolved oxygen, was observed from both matrices. The polystyrene encapsulated dye exhibited downward-turning Stern-Volmer plots which were well fitted by a two-site model. The ormosil trapped complex showed linear Stern-Volmer plots for dissolved oxygen quenching but was downward turning for gaseous oxygen. No leaching was observed when the ormosil based sensors were immersed in flowing water over an 8 h period. Both films exhibited fully reversible response and recovery to changing oxygen concentration with rapid response times. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new photocatalyst indicator ink based on methylene blue (MB) is described that allows the presence and activity of a thin (15 nm) photocatalytic film to be assessed in seconds. The ink is very stable (shelf life > 6 months) and the color change (blue to colorless) striking. The ink utilizes a sacrificial electron donor, glycerol, to trap the photogenerated holes, leaving the photogenerated electrons to react with MB to produce its. reduced, leuco, form (LMB). The efficacy of the MB ink is due to the presence of acid in its formulation, which curtails significantly. the otherwise usual, rapid reoxidation of LMB by ambient O-2.
Resumo:
The use of two gold compounds incorporated into thin plastic films as luminescence quenching oxygen sensors is described. The films are sensitive both to gaseous oxygen and to oxygen dissolved in nonaqueous media such as ethanol. The luminescence quenching of these sensors by oxygen obeys the Stern-Volmer equation and Stern-Volmer constants of 5.35 x 10(-3) and 0.9 x 10(-3) Torr(-1) are found, respectively, for the two dyes in a polystyrene polymer matrix. The sensitivity of the films is strongly influenced by the nature of the polymer matrix, and greatest sensitivity was found in systems based an the polymers polystyrene or cellulose acetate butyrate. Sensitivity was not found to be temperature dependent though raising the temperature hom 15 to 50 degrees C did result in a slight decrease in emission intensity and a hypsochromic shift in the emission wavelength. The rate of response and recovery of the sensors can be increased either by decreasing film thickness or by increasing the operating temperature. The operational and storage stability of these films is generally good though exposure to light should be avoided as one of the dyes tends to undergo photobleaching probably due to a photoinduced ligand substitution reaction.
Resumo:
The method of preparation of a novel plastic thin-film sensor that incorporates the fluorescent dye 8-hydroxypryrene-1,3,6-trisulfonic acid is described; the shelf-life of the film is over 6 months. The results of a study on the equilibrium response of the sensor towards different levels of gaseous CO2 fit a model there is a 1 + 1 equilibrium reaction between the deprotonated form of the dye (present in the film as an ion pair) and the concentration of gaseous CO2 present. In contrast to the situation in aqueous solution, in the plastic film the pK(a) of the excited form of the dye appears close to that of the ground-state form, although this does not interfere with its use as 8 CO2 sensor. The 0 to 90% response and recovery times of the film when exposed to an alternating atmosphere of air and 5% CO2 are typically 4.3 and 7.1 s, respectively.
Resumo:
Fabrication of devices based on thin film structures deposited using the pulsed laser deposition technique relies on reproducibility and control of deposition rates over substrate areas as large as possible. Here we present an application of the random phase plate technique to smooth and homogenize the intensity distribution of a KrF laser footprint on the surface of a target which is to be ablated. It is demonstrated that intensity distributions over millimeter-sized spots on the target can be made insensitive to the typical changes that occur in the near-field intensity distribution of the ultraviolet output from a KrF laser. (C) 1999 American Institute of Physics. [S0034-6748(99)02504-6].
Resumo:
The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.
Resumo:
Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704655]