984 resultados para sostituzione aromatica, derivati amminotiazolici, sali di diazonio, 1,3,5-Trinitrobenzene, meccanismi di reazione
Resumo:
Using neutron and single crystal X-ray diffraction the structures of 1,3-dimethylimidazolim chloride and hexafluorophosphate salts have been determined in the liquid and the solid-state. The relative hydrogen bonding characteristics and sizes of the two anions force the ions to pack differently. In each case, a strong correlation between the crystal structure and liquid structure is found.
Resumo:
The structure of liquid 1, 3-dimethylimidazolium hexafluorophosphate is described in detail and compared with the structure of 1, 3-dimethylimidazolium chloride. In each case, the data were obtained from neutron diffraction experiments and analysed using an empirical potential structure refinement process. Overall, the structures are similar; however, significant differences arise from the variation in anion size.
Resumo:
Ionic liquids have received significant interest from both academia and industry for a wide range of applications which often requires knowledge of their thermophysical properties. Quantitative structure-property relationship correlations and group contribution methods for thermophysical properties of ionic liquids are a basic necessity for the development of computer aided molecular design approaches for these liquids and subsequently offer the potential for designing an ionic liquid having a desirable set of thermophysical properties. However, the limited availability of experimental thermophysical data and their quality have prevented the development of such tools. Based on previously reported experimental surface tension data, a correlation of the parachors with the molar volume of the ionic liquids has been developed. The predicted parachor values have been shown to be in good agreement with the experimental data. A maximum deviation of
Resumo:
The tropolone subunit of the naturally occurring alkaloid rubrolone aglycon is synthesized via a short reaction sequence starting with a 1,3-dipolar cycloaddition of a pyrylium ylide and indenone, followed by enone oxidation, oxygen bridge elimination and finally hydroxy group oxidation.
Resumo:
The interactions of ions in the solid state for a series of representative 1,3-dialkylimidazolium hexafluorophosphate salts (either ionic liquids or closely related) have been examined by crystallographic analysis, combined with the theoretical estimation of crystal-packing densities and lattice-interaction energies. Efficient close-packing of the ions in the crystalline states is observed, but there was no compelling evidence for specific directional hydrogen-bonding to the hexafluorophosphate anions or the formation of interstitial voids. The close-packing efficiency is supported by the theoretical calculation of ion volumes, crystal lattice energies, and packing densities, which correlated well with experimental data. The crystal density of the salts can be predicted accurately from the summation of free ion volumes and lattice energies calculated. Of even more importance for future work, on these and related salts, the solid-state density of 1,3-dialkylimidazolium hexafluorophosphate salts can be predicted with reasonable accuracy purely on the basis of on ab initio free ion volumes, and this allows prediction of lattice energies without necessarily requiring the crystal structures.
Resumo:
The previously reported preparation of 1,3-dimethylimidazolium salts by the reaction of 1,3-dialkylimidazolium-2-carboxylate zwitterions with protic acids has been reinvestigated in detail, leading to the identification of two competing reactions: isomerisation and decarboxylation. The ability to control both pathways allows this methodology to be used as an effective, green, waste-free approach to readily prepare a wide range of ionic liquids in high yields. Additionally, this reaction protocol opens new possibilities in the formation of other imidazolium salts, whose syntheses were previously either very expensive (due to ion exchange protocols involving metals like Ag) or difficult to achieve (due to multiple extractions and large quantities of hard to remove inorganic by-products).
Resumo:
The novel ionic liquid, 1-butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate has been synthesized and exhibits an unexpectedly low melting point (35 degreesC) considering the size and shape of the rigid, planar anion; analogous tetraalkylammonium salts (methyl, ethyl and n-butyl) have also been prepared and the tetraethylammonium example was characterized by single crystal X-ray diffraction.
Resumo:
New low-cost ionic liquids containing methyl- and ethyl-sulfate anions can be easily and efficiently prepared under ambient conditions by the reaction of 1-alkylimidazoles with dimethyl sulfate and diethyl sulfate. The preparation and characterization of a series of 1,3-dialkylimidazolium alkyl sulfate and 1,2,3-trialkylimidazolium alkyl sulfate salts are reported. 1,3-Dialkylimidazolium salts containing at least one non-methyl N-alkyl substituent are liquids at, or below room, temperature. Three salts were crystalline at room temperature, the single crystal X-ray structure of 1,3-dimethylimidazolium methyl sulfate was determined and shows the formation of discrete ribbons comprising of two anion-cation hydrogen-bonded chains linked via intra-chain hydrogen-bonding, but little, or no inter-ribbon hydrogen-bonding. The salts are stable, water soluble, inherently 'chloride-free', display an electrochemical window of greater than 4 V, and can be used as alternatives to the corresponding halide salts in metathesis reactions to prepare other ionic liquids including 1-butyl-3-methylimidazolium hexafluorophosphate.
Resumo:
1,3-Dimethylimidazolium-2-carboxylate is formed in good yield, rather than the anticipated organic salt, 1,3-dimethylimidazolium methyl carbonate, as the reaction product resulting from both N-alkylation and C-carboxylation of 1-methylimidazole with dimethyl carbonate; the crystal structure of the zwitterion exhibits pi-stacked rings and two-dimensional sheets constructed by hydrogen-bonds from imidazolium-ring hydrogens to the carboxylate group.
Resumo:
Colourless single crystals of [Ag-3(Dat)(2)](NO3)(3) were obtained from a reaction of silver(l) nitrate and 3,5-dimethyl-4-amino-1,2,4-triazole (Dat). In the crystal structure (orthorhombic, Fdd2, Z = 8, a = 1100.1(2), b = 3500.3(2), c = 1015.4(3) pm, R, = 0.0434) there are two crystallographically non-equivalent silver sites in a one (Ag1) to two ratio (Ag2). Both resemble linear N-Ag-N coordination although angles are 163 degrees and 144 degrees, respectively Each Dat ligand coordinates with the two ring nitrogen atoms at 216 to 219 pm and with one amino-nitrogen atom at 229 pro. According to the composition [Ag-3(Dat)(2)](3+) = [(Dat)Ag-3/2](3+), a polymeric structure is built with all Ag+ ions bridging.
Resumo:
This paper describes the use of molecular mechanics to model the geometry of the sodium complex of a calix[4] arene tetraester, in the 1,3-alternate conformation 1. Partial charges were assigned to the calixarene on the basis of semi-empirical (AM1, PM3, MNDO, INDO, CNDO and ZINDO) calculations and the binding of the sodium ion to the calixarene was modelled using molecular mechanics. Agreement between the optimised and X-ray structures of the complex was very good. The effect of placing the cation in different starting positions on the energy-minimised geometry of the complex is described.
Resumo:
Variable-temperature magnetic susceptibility measurements in the solid state of the bis complex of tris(1-pyrazolyl)-methane with Fe(II), [Fe(tpm)2](ClO4)2, suggest the existence of singlet-quintet spin crossover with the singlet isomer largely favored at room temperature. In acetonitrile solution, measurement of the absorption spectrum as a function of temperature reveals a spin equilibrium with the quintet population varying from ca. 6% at 233 K to ca. 30% at 295 K. When the complex in solution is irradiated with a laser pulse at wavelengths within the ligand field absorption band of the singlet isomer, ground-state depletion occurs within the pulse duration followed by fast recovery to the original absorbance level with a time constant of 25 +/- 5ns. The recovery time is virtually independent of temperature over the range +23 to -43-degrees-C, but the signal:noise ratio of the transient signals increases with decreasing temperature. The effect was observable at several monitoring wavelengths spanning the LF and MLCT absorption regions of the complex but only when the irradiation wavelength fell within the LF absorption region. Irradiation within the MLCT band produced no effect other than that of laser pulse scatter. The observations are interpreted in terms of photoperturbation of the singlet-quintet spin state equilibrium, which in this case occurs solely through excitation in the ligand field absorption region of the complex and is the first reported instance of this type for a spin-crossover complex in solution.
Resumo:
1,3-propanediol was subjected to a range of amination conditions. The N-heterocyclic carbene piano stool complex [Cp*IrCl2(bmim)] was found to be a good catalyst for amination and dehydration in toluene or ionic liquid; product compositions could be tuned by altering the ratio of diol to amine.