938 resultados para self-assembled quantum dots
Resumo:
In this letter, we propose a scheme to buildup a highly coherent solid-state quantum bit (qubit) from two coupled quantum dots. Quantum information is stored in the state of the electron-hole pair with the electron and hole located in different dots, and universal quantum gates involving any pair of qubits are realized by effective coupling interaction via virtually exchanging cavity photons. (C) 2002 American Institute of Physics.
Resumo:
Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.
Resumo:
The effect of the growth temperature on the properties of InAlAs/AlGaAs quantum dots grown on GaAs(100) substrates is investigated. The optical efficiency and structural uniformity are improved by increasing the growth temperature from 530 to 560 degreesC. The improvements of InAlAs/AlGaAs quantum-dot characteristics could be explained by suppressing the incorporation of oxygen and the formation of group-III vacancies. Furthermore, edge-emitting laser diodes with six quantum-dot layers grown at 560 degreesC have been fabricated. Lasing occurs via the ground state at 725 nm, with a room-temperature threshold current density of 3.9 kA/cm(2), significantly better than previously reported values for this quantum-dot systems. (C) 2002 American Institute of Physics.
Resumo:
A new method to form nanoscale InGaN quantum dots using MOCVD is reported, This method is much different from a method. which uses surfactant or the Stranski-Krastannow growth mode. The dots were formed by increasing the energy barrier for adatoms, which are hopping by surface passivation, and by decreasing the growth temperature. Thus, the new method can be called as a passivation-low-temperature method. Regular high-temperature GaN films were grown first and were passivated. A low-temperature thin layer of GaN dot was then deposited on the surface that acted as the adjusting layer. At last the high-density InGaN dots could be fabricated on the adjusting layer. Atomic force microscopy measurement revealed that InGaN dots were small enough to expect zero-dimensional quantum effects: The islands were typically 80 nm wide and 5 nm high. Their density was about 6 x 10(10) cm(-2). Strong photoluminescence emission from the dots is observed at room temperature, which is much stronger than that of the homogeneous InGaN film with the same growth time. Furthermore, the PL emission of the GaN adjusting layer shows 21 meV blueshift compared with the band edge emission of the GaN due to quantum confine effect. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Micrometer-sized spherical glass microspheres were fabricated. CdSeS semiconductor nanometer clusters were incorporated into spherical microcavities. When a single microsphere was excited by a laser beam, the whispering gallery mode resonance of the photoluminescence of CdSeS quantum dots in the spherical microcavities was realized by the multiple total internal reflections at the spherical interface. The coupling of restricted electronic and photonic states was realized.
Resumo:
The photoluminescence (PL) of CdSexS1-x semiconductor quantum dots (QDs) in a glass spherical microcavity is investigated. The CdSexS1-x semiconductor clusters embedded in a glass matrix are fabricated by using the heat treatment method. Periodical structures consisting of sharp spectral lines are observed in the PL spectra of CdSexS1-x QDs, which can be well explained by the coupling with the whispering gallery modes of the spherical microcavity based on Mie scattering theory.
Resumo:
We have investigated random telegraph noise in the photoluminescence from InGaAs quantum dots in GaAs. Dots switching among two and three levels have been measured. The experiments show that the switching InGaAs dots behave very similarly to switching InP dots in GaInP. but differently from the more commonly investigated colloidal dots. The switching is attributed to defects, and we show that the switching can be used as a monitor of the defect.
Resumo:
Glass spherical microcavities containing CdSexS1-x semiconductor quantum dots (QDs) are fabricated. The coupling between the optical emission of embedded CdSexS1-x QDs and spherical cavity modes is realized. When the luminescence of QDs is excited by a laser beam, the strong whispering gallery mode resonance with high Q factors is achieved in the photoluminescence spectra. (C) 2001 American Institute of Physics.
Resumo:
We have studied the effects of postgrowth rapid thermal annealing on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick InxGa1-xAs (x = 0, 0.1, and 0.2) overgrowth layer. At higher annealing temperature (T greater than or equal to 750 degreesC), the photoluminescence peak of InGaAs layer has been observed at lower-energy side of the InAs quantum-dot peak. In addition, the blueshift in photoluminescence (PL) emission energy is found to he similar for all samples with increasing the annealing temperature from 650 to 850 degreesC. However, the trend of narrowing of photoluminescence linewidth is significantly different for InAs quantum dots with different In mole fractions in InGaAs overgrowth layer. These results suggest that the intermixing in the lateral direction plays an important role in helping to understand the modification of optical properties induced by rapid thermal annealing. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Strong temperature dependence of optical properties has been studied in visible InAlAs/AlGaAs quantum dots, by employing photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. The fast redshift of the exciton emission peak was observed at much lower temperature range compared to that observed in the InAs/GaAs QDs. In TRPL we did not observe the constant decay time even at low temperature. Instead, the observed decay time increases quickly with increasing temperature, showing 2D properties in the transient dynamic process. We attributed our results to the strong lateral coupling effect, which results in the formation of the local minibands or extended states from the discrete energy levels. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Growth interruption was introduced during the growth of GaAs capping layer of self-organized quantum dots. The comparison of two QD lasers with and without growth interruption in their active regions shows that growth interruption leads to lower threshold current, higher characteristic temperature, and weaker temperature dependence of lasing energy.
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Influence of substrate orientation on In0.5Ga0.5As/GaAs quantum dots grown by molecular beam epitaxy
Resumo:
In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
By extending the microscopic dipole model on optical-phonon modes as applied in quantum wells and quantum wires, to rectangular quantum dots (QD), optical phonon modes and their accompanying Frohlich potentials in QD are calculated and classified. When the bulk phonon dispersion is ignored, the optical phonon modes in QD can be clearly divided into the confined LO- and TO-bulk-like modes and the extended interface-like modes. Among the interface-like modes, a special attention is given to the corner modes, whose anisotropic behavior is depicted in the long wavelength limit. Based on the numerical results, a set of analytical formula are proposed to approximately describe the bulk-like modes, for which both the optical displacements and Frohlich potentials vanish at the interfaces. (C) 2000 Elsevier Science Ltd. All rights reserved.