855 resultados para phenolic-epoxy blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of high-density biopolyethylene (HDBPE) obtained from ethylene derived from sugarcane ethanol and curaua fibers were formed by first mixing in an internal mixer followed by thermopressing. Additionally, hydroxyl-terminated polybutadiene (LHPB), which is usually used as an impact modifier, was mainly used in this study as a compatibilizer agent. The fibers, HDBPE and LHPB were also compounded using an inter-meshing twin-screw extruder and, subsequently, injection molded. The presence of the curaua fibers enhanced some of the properties of the HDBPE, such as its flexural strength and storage modulus. SEM images showed that the addition of LHPB improved the adhesion of the fiber/matrix at the interface, which increased the impact strength of the composite. The higher shear experienced during processing probably led to a more homogeneous distribution of fibers, making the composite that was prepared through extruder/injection molding more resistant to impact than the composite processed by the internal mixer/thermopressing. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene-vinyl acetate copolymer (EVA) with 19% of vinyl acetate and its derivatives modified by hydrolysis of 50 and 100% of the initial vinyl acetate groups were used to produce blends with thermoplastic starch (TPS) plasticized with 30 wt% glycerol. The blends were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy. X-ray diffraction, water absorption, stress-strain mechanical tests, dynamic mechanical analysis and thermogravimetric analysis. In contrast to the blends with unmodified EVA. those made with hydrolyzed EVA were compatible, as demonstrated by the brittle fracture surface analysis and the results of thermal and mechanical tests. The mechanical characteristics and water absorption of the TPS were improved even with a small addition (2.5 wt%) of hydrolyzed EVA. The glass transition temperature rose with the degree of hydrolysis of EVA by 40 and 50 degrees, for the EVA with 50 and 100% hydrolysis, respectively. The addition of hydrolyzed EVA proved to be an interesting approach to improving TPS properties, even when very small quantities were used, such as 2.5 wt%. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blending polypropylene (PP) with biodegradable poly(3-hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene-g-maleic anhydride) (PPMAH), poly (ethylene-co-methyl acrylate) [P(EMA)], poly(ethylene-co-glycidyl methacrylate) [P(EGMA)], and poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) [P(EMAGMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(EMAGMA) > P(EMA) > P(EGMA) > PP-MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 3511-3519, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

trans-Free interesterified fat was produced for possible usage as a margarine. Palm stearin, coconut oil, and canola oil were used as substrates for chemical interesterification. The main aim of the present study was to evaluate the physicochemical properties of blends of palm stearin, coconut oil, and canola oil submitted to chemical interesterification using sodium methoxide as the catalyst. The original and interesterified blends were examined for fatty acid composition, softening and melting points, solid fat content, and consistency. Chemical interesterification reduced softening and melting points, consistency, and solid fat content. The interesterified fats showed desirable physicochemical properties for possible use as a margarine. Therefore, our result suggested that the interesterified fat without trans-fatty acids could be used as an alternative to partially hydrogenated fat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bare graphite-epoxy composite was evaluated as an electrode material in the determination of atenolol in natural water samples and pharmaceutical formulations for which the analyte was spiked. Using a DPV procedure, a linear response was observed in the 4.45-84.7 mu mol L-1 range with a LOD = 2.23 mu mol L-1, without need of surface renewal between successive runs, and recoveries between 92.5 and 107.5% for pharmaceutical formulations. The results obtained from the proposed procedure agreed with HPLC results within a 95% confidence level. During the determination of atenolol in water samples, recoveries between 96.1 and 102.6% were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetables are widely consumed in Brazil and exported to several countries. This study was performed to evaluate the phenolic content and antioxidant activity of vegetables commonly consumed in Brazil using five different methods, namely DPPH and ABTS free radical, beta-carotene bleaching, reduction of Fe3+ (FRAP), oxidative stability in Rancimat, and the chemical composition using gas chromatography-mass spectrometry (GC-MS). The content of phenolic compounds ranged from 1.2 mg GA/g (carrot) to 16.9 mg GA/g (lettuce). Vegetables presenting the highest antioxidant activity were lettuce (77.2 mu mol Trolox/g DPPH center dot; 447.1 mu mol F2+/g FRAP), turmeric (118.6 mu mol Trolox/g ABTS(center dot+); 92.8% beta-carotene), watercress and broccoli (protective factor 1.29-Rancimat method). Artichoke, spinach, broccoli, and asparagus also showed considerable antioxidant activity. The most frequent phenolic compounds identified by GC-MS were ferulic, caffeic, p-coumaric, 2-dihydroxybenzoic, 2,5-dihydroxybenzoic acids, and quercetin. We observed antioxidant activity in several vegetables and our results point out their importance in the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replacement of phenol with sodium lignosulfonate and formaldehyde with glutaraldehyde in the preparation of resins resulted in a new resol-type phenolic resin, sodium lignosulfonate-glutaraldehyde resin, in addition to sodium lignosulfonate-formaldehyde and phenol-formaldehyde resins. These resins were then used to prepare thermosets and composites reinforced with sisal fibers. Different techniques were used to characterize raw materials and/or thermosets and composites, including inverse gas chromatography, thermogravimetric analysis, and mechanical impact and flexural tests. The substitution of phenol by sodium lignosulfonate in the formulation of the composite matrices increased the impact strength of the respective composites from approximately 400 Jm(-1) to 800 J m(-1) and 1000 J m(-1), showing a considerable enhancement from the replacement of phenol with sodium lignosulfonate. The wettability of the sisal fibers increased when the resins were prepared from sodium lignosulfonate, generating composites in which the adhesion at the fiber-matrix interface was stronger and favored the transference of load from the matrix to the fiber during impact. Results suggested that the composites experienced a different mechanism of load transfer from the matrix to the fiber when a bending load was applied, compared to that experienced during impact. The thermogravimetric analysis results demonstrated that the thermal stability of the composites was not affected by the use of sodium lignosulfonate as a phenolic-type reagent during the preparation of the matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the penetration of endodontic sealer into the dentin tubules, the integrity of the sealer layer perimeter, and the sealer area at the apical third after different filling techniques by confocal laser scanning microscopy (CLSM). Forty-five mandibular premolars were mechanically prepared with ProTaper files, until F5 file. Thereafter, they were filled with an epoxy-resin sealer (AH Plus) mixed with Rhodamine B dye (0.1% proportion) and allocated in three groups: Group 1, single master cone; Group 2, cold lateral compaction; and Group 3, Thermafil. For confocal laser scanning microscopy analysis, the specimens were transversely sectioned at 4 mm from the apex. The images at x10 and x40 were analyzed by Imagetool 3.0 software. Significant differences were not found among the three experimental groups according the dentin-impregnate area by the sealer (P = 0.68) and between the sealer and root canal perimeter (P = 0.18). However, root canal filling techniques were significantly different when apical sealer areas were compared (P = 0.001). Thermafil group showed smaller sealer areas (8.09%) while cold lateral compaction and gutta-percha master cone showed similar areas (17.37 and 21.18%, respectively). The dentin-impregnated area was not dependent on the root canal filling technique. Single master cone, cold lateral condensation and Thermafil techniques presented integrity of the sealer perimeter close to 100% and Thermafil resulted in a significantly thinner sealer layer. Microsc. Res. Tech. 75:12771280, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenolic composition of heartwood extracts from Fraxinus excelsior L. and F. americana L., both before and after toasting in cooperage, was studied using LC-DAD/ESI-MS/MS. Low-molecular weight (LMW) phenolic compounds, secoiridoids, phenylethanoid glycosides, dilignols and oligolignols compounds were detected, and 48 were identified, or tentatively characterized, on the basis of their retention time, UV/Vis and MS spectra, and MS fragmentation patterns. Some LMW phenolic compounds like protocatechuic acid and aldehyde, hydroxytyrosol and tyrosol, were unlike to those for oak wood, while ellagic and gallic acid were not found. The toasting of wood resulted in a progressive increase in lignin degradation products with regard to toasting intensity. The levels of some of these compounds in medium-toasted ash woods were much higher than those normally detected in toasted oak, highlighting vanillin levels, thus a more pronounced vanilla character can be expected when using toasted ash wood in the aging wines. Moreover, in seasoned wood, we found a great variety of phenolic compounds which had not been found in oak wood, especially oleuropein, ligstroside and olivil, along with verbascoside and isoverbascoside in F. excelsior, and oleoside in F. americana. Toasting mainly provoked their degradation, thus in medium-toasted wood, only four of them were detected. This resulted in a minor differentiation between toasted ash and oak woods. The absence of tannins in ash wood, which are very important in oak wood, is another peculiar characteristic that should be taken into account when considering its use in cooperage. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the efficacy of QMiX, SmearClear, and 17% EDTA for the debris and smear layer removal from the root canal and its effects on the push-out bond strength of an epoxy-based sealer by scanning electron microscopy (SEM). Forty extracted human canines (n = 10) were assigned to the following final rinse protocols: G1-distilled water (control), G2–17% EDTA, G3-SmearClear, and G4-QMiX. The specimens were submitted to a SEM analysis to evaluate the presence of debris and smear layer, respectively, in the apical or cervical segments. In sequence, forty extracted human maxillary canines with the root canals instrumented were divided into four groups (n = 10) similar to the SEM analysis study. After the filling with AH Plus, the roots were transversally sectioned to obtain dentinal slices. The specimens were submitted to a push-out bond strength test using an electromechanical testing machine. The statistical analysis for the SEM and push-out bond strength studies were performed using the Kruskal–Wallis and Dunn tests (α = 5%). There was no difference among the G2, G3, and G4 efficacy in removing the debris and smear layer (P > 0.05). The efficacy of these groups was superior to the control group. The push-out bond strength values of G2, G3, and G4 were superior to the control group. The ability to remove the debris and smear layer by SmearClear and QMiX was as effective as the 17% EDTA. The final rinse with these solutions promoted similar push-out bond strength values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Phenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk. Methods To evaluate the effect of an aqueous extract (AQ) and non-esterified phenolic fraction (NEPF) from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C) and 5 hypercholesterolemic diet groups, with 1 receiving water (HC), 2 receiving AQ at concentrations of 7 and 140 mg/kg body weight (AQ70 and AQ140, respectively), and 2 receiving NEPF at concentrations of 7 and 14 mg/kg body weight (NEPF7 and NEPF14, respectively) by gavage for 4 weeks. Results In vitro, both AQ and NEPF had remarkable antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) assay, which was similar to BHT. In vivo, the group that received AQ at 70 mg/kg body weight had lower serum total cholesterol (−39.8%), non-HDL-c (−44.4%) and thiobarbituric acid reactive substance (TBARS) levels (−37.7%) compared with the HC group. NEPF (7 and 14 mg/kg) reduced the tissue TBARS levels and increased the activity of tissular antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase). Neither AQ nor NEPF was able to ameliorate the alterations in the hypercholesterolemic diet-induced fatty acid composition in the liver. Conclusions These data suggest that phenolic compounds from rosemary ameliorate the antioxidant defense in different tissues and attenuate oxidative stress in diet-induced hypercholesterolemic rats, whereas the serum lipid profile was improved only in rats that received the aqueous extract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.