880 resultados para insulin receptor substrate proteins
Resumo:
Identification of epitopes by modification studies has been reported by us recently. The method requires milligram quantities of antigen and since several proteins are not available in large quantities they are not amenable for such an investigation. One such protein is human follicle stimulating hormone (hFSH) whose mapping of epitopes is of importance in reproductive biology. Here we report a method that uses microgram quantities of hFSH to map a beta-specific epitope located at the receptor binding region. This identification has also been validated by the chemical modification method using heterologous antigen ovine follicle stimulating hormone (oFSH).
Resumo:
Proteolysis is important in bacterial pathogenesis and colonization of animal and plant hosts. In this work I have investigated the functions of the bacterial outer membrane proteases, omptins, of Yersinia pestis and Salmonella enterica. Y. pestis is a zoonotic pathogen that causes plague and has evolved from gastroenteritis-causing Yersinia pseudotuberculosis about 13 000 years ago. S. enterica causes gastroenteritis and typhoid fever in humans. Omptins are transmembrane β-barrels with ten antiparallel β-strands and five surface-exposed loops. The loops are important in substrate recognition, and variation in the loop sequences leads to different substrate selectivities between omptins, which makes omptins an ideal platform to investigate functional adaptation and to alter their polypeptide substrate preferences. The omptins Pla of Y. pestis and PgtE of S. enterica are 75% identical in their amino acid sequences. Pla is a multifunctional protein with proteolytic and non-proteolytic functions, and it increases bacterial penetration and proliferation in the host. Functions of PgtE increase migration of S. enterica in vivo and bacterial survival in mouse macrophages, thus enhancing bacterial spread within the host. Mammalian plasminogen/fibrinolytic system maintains the balance between coagulation and fibrinolysis and participates in several cellular processes, e.g., cell migration and degradation of extracellular matrix proteins. This system consists of activation cascades, which are strictly controlled by several regulators, such as plasminogen activator inhibitor 1 (PAI-1), α2-antiplasmin (α2AP), and thrombin-activatable fibrinolysis inhibitor (TAFI). This work reveals novel interactions of the omptins of Y. pestis and S. enterica with the regulators of the plasminogen/fibrinolytic system: Pla and PgtE inactivate PAI-1 by cleavage at the reactive site peptide bond, and degrade TAFI, preventing its activation to TAFIa. Structure-function relationship studies with Pla showed that threonine 259 of Pla is crucial in plasminogen activation, as it prevents degradation of the plasmin catalytic domain by the omptin and thus maintains plasmin stability. In this work I constructed chimeric proteins between Pla and Epo of Erwinia pyrifoliae that share 78% sequence identity to find out which amino acids and regions in Pla are important for its functions. Epo is neither a plasminogen activator nor an invasin, but it degrades α2AP and PAI-1. Cumulative substitutions towards Pla sequence turned Epo into a Pla-like protein. In addition to threonine 259, loops 3 and 5 are critical in plasminogen activation by Pla. Turning Epo into an invasin required substitution of 31 residues located at the extracellular side of the Epo protein above the lipid bilayer, and also of the β1-strand in the N-terminal transmembrane region of the protein. These studies give an example of how omptins adapt to novel functions that advantage their host bacteria in different ecological niches.
Resumo:
A Caucasian male aged 15 years presented with 2 years accelerated linear growth. He was 202 cm tall at presentation, with calculated mid-parental height of 173 cm. There were no features of hypopituitarism or acral growth. His visual fields and optic discs were normal...
Resumo:
BACKGROUND Approximately 50% of patients with stage 3 Chronic Kidney Disease are 25-hydroxyvitamin D insufficient, and this prevalence increases with falling glomerular filtration rate. Vitamin D is now recognised as having pleiotropic roles beyond bone and mineral homeostasis, with the vitamin D receptor and metabolising machinery identified in multiple tissues. Worryingly, recent observational data has highlighted an association between hypovitaminosis D and increased cardiovascular mortality, possibly mediated via vitamin D effects on insulin resistance and inflammation. The main hypothesis of this study is that oral Vitamin D supplementation will ameliorate insulin resistance in patients with Chronic Kidney Disease stage 3 when compared to placebo. Secondary hypotheses will test whether this is associated with decreased inflammation and bone/adipocyte-endocrine dysregulation. METHODS/DESIGN This study is a single-centre, double-blinded, randomised, placebo-controlled trial. Inclusion criteria include; estimated glomerular filtration rate 30-59 ml/min/1.73 m(2); aged >or=18 on entry to study; and serum 25-hydroxyvitamin D levels <75 nmol/L. Patients will be randomised 1:1 to receive either oral cholecalciferol 2000IU/day or placebo for 6 months. The primary outcome will be an improvement in insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp. Secondary outcome measures will include serum parathyroid hormone, cytokines (Interleukin-1beta, Interleukin-6, Tumour Necrosis Factor alpha), adiponectin (total and High Molecular Weight), osteocalcin (carboxylated and under-carboxylated), peripheral blood mononuclear cell Nuclear Factor Kappa-B p65 binding activity, brachial artery reactivity, aortic pulse wave velocity and waveform analysis, and indirect calorimetry. All outcome measures will be performed at baseline and end of study. DISCUSSION To date, no randomised controlled trial has been performed in pre-dialysis CKD patients to study the correlation between vitamin D status with supplementation, insulin resistance and markers of adverse cardiovascular risk. We remain hopeful that cholecalciferol may be a safe intervention, with health benefits beyond those related to bone-mineral homeostasis. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry ACTRN12609000246280.
Resumo:
In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, tyrphostin-A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin-A47-treated spermatozoa exhibited circular motility, which was associated with a distinct hypo-tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000-60,000. In this study, we provide evidence on the localization of capacitation-associated tyrosine-phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo-tyrosine phosphorylated major proteins of tyrphostin-A47-treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein-2 and the 51 kDa protein as tektin-2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo-tyrosine-phosphorylation status of outer dense fiber protein-2 and tektin-2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR-tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa.
Resumo:
The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.
Resumo:
Hydrophobins are a group of particularly surface active proteins. The surface activity is demonstrated in the ready adsorption of hydrophobins to hydrophobic/hydrophilic interfaces such as the air/water interface. Adsorbed hydrophobins self-assemble into ordered films, lower the surface tension of water, and stabilize air bubbles and foams. Hydrophobin proteins originate from filamentous fungi. In the fungi the adsorbed hydrophobin films enable the growth of fungal aerial structures, form protective coatings and mediate the attachment of fungi to solid surfaces. This thesis focuses on hydrophobins HFBI, HFBII, and HFBIII from a rot fungus Trichoderma reesei. The self-assembled hydrophobin films were studied both at the air/water interface and on a solid substrate. In particular, using grazing-incidence x-ray diffraction and reflectivity, it was possible to characterize the hydrophobin films directly at the air/water interface. The in situ experiments yielded information on the arrangement of the protein molecules in the films. All the T. reesei hydrophobins were shown to self-assemble into highly crystalline, hexagonally ordered rafts. The thicknesses of these two-dimensional protein crystals were below 30 Å. Similar films were also obtained on silicon substrates. The adsorption of the proteins is likely to be driven by the hydrophobic effect, but the self-assembly into ordered films involves also specific protein-protein interactions. The protein-protein interactions lead to differences in the arrangement of the molecules in the HFBI, HFBII, and HFBIII protein films, as seen in the grazing-incidence x-ray diffraction data. The protein-protein interactions were further probed in solution using small-angle x-ray scattering. Both HFBI and HFBII were shown to form mainly tetramers in aqueous solution. By modifying the solution conditions and thereby the interactions, it was shown that the association was due to the hydrophobic effect. The stable tetrameric assemblies could tolerate heating and changes in pH. The stability of the structure facilitates the persistence of these secreted proteins in the soil.
Resumo:
Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.
Resumo:
Specific penicillin-carrier receptor proteins (CRP) have been isolated from the sera of penicillin allergic rabbits and human subjects in the unconjugated native state in electrophoretically homogeneous form by employing a synthetic polymeric affinity template containing the 7-deoxy analogue of penicillin G. The synthesis of the 7-deoxy analogue has been described. In this affinity system the antipenicillin-antibody is desorbed by 0·9M thiourea and the CRP in 8M urea. The CRP after incubation with penicillin is converted into the full-fledged antigen. Studies on the origin of CRP and the nature of antibody as well as comparative studies on the properties of the rabbit antibody and those of antibodies elicited by a BSA-BPO conjugate are reported.
Resumo:
Pre-eclampsia is a pregnancy complication that affects about 5% of all pregnancies. It is known to be associated with alterations in angiogenesis -related factors, such as vascular endothelial growth factor (VEGF). An excess of antiangiogenic substances, especially the soluble receptor-1 of VEGF (sVEGFR-1), has been observed in maternal circulation after the onset of the disease, probably reflecting their increased placental production. Smoking reduces circulating concentrations of sVEGFR-1 in non-pregnant women, and in pregnant women it reduces the risk of pre-eclampsia. Soluble VEGFR-1 acts as a natural antagonist of VEGF and placental growth factor (PlGF) in human circulation, holding a promise for potential therapeutic use. In fact, it has been used as a model to generate a fusion protein, VEGF Trap , which has been found effective in anti-angiogenic treatment of certain tumors and ocular diseases. In the present study, we evaluated the potential use of maternal serum sVEGFR-1, Angiopoietin-2 (Ang-2) and endostatin, three central anti-angiogenic markers, in early prediction of subsequent pre-eclampsia. We also studied whether smoking affects circulating sVEGFR-1 concentrations in pregnant women or their first trimester placental secretion and expression in vitro. Last, in order to allow future discussion on the potential therapy based on sVEGFR-1, we determined the biological half-life of endogenous sVEGFR-1 in human circulation, and measured the concomitant changes in free VEGF concentrations. Blood or placental samples were collected from a total of 268 pregnant women between the years 2001 2007 in Helsinki University Central Hospital for the purposes above. The biomarkers were measured using commercially available enzyme-linked immunosorbent assays (ELISA). For the analyses of sVEGFR-1, Ang-2 and endostatin, a total of 3 240 pregnant women in the Helsinki area were admitted to blood sample collection during two routine ultrasoundscreening visits at 13.7 ± 0.5 (mean ± SD) and 19.2 ± 0.6 weeks of gestation. Of them, 49 women later developing pre-eclampsia were included in the study. Their disease was further classified as mild in 29 and severe in 20 patients. Isolated early-onset intrauterine growth retardation (IUGR) was diagnosed in 16 women with otherwise normal medical histories and uncomplicated pregnancies. Fifty-nine women remaining normotensive, non-proteinuric and finally giving birth to normal-weight infants were picked to serve as the control population of the study. Maternal serum concentrations of Ang-2, endostatin and sVEGFR-1, were increased already at 16 20 weeks of pregnancy, about 13 weeks before the clinical manifestation of preeclampsia. In addition, these biomarkers could be used to identify women at risk with a moderate precision. However, larger patient series are needed to determine whether these markers could be applied for clinical use to predict preeclampsia. Intrauterine growth retardation (IUGR), especially if noted at early stages of pregnancy and not secondary to any other pregnancy complication, has been suggested to be a form of preeclampsia compromising only the placental sufficiency and the fetus, but not affecting the maternal endothelium. In fact, IUGR and preeclampsia have been proposed to share a common vascular etiology in which factors regulating early placental angiogenesis are likely to play a central role. Thus, these factors have been suggested to be involved in the pathogenesis of IUGR. However, circulating sVEGFR-1, Ang-2 and endostatin concentrations were unaffected by subsequent IUGR at early second trimester. Furthermore, smoking was not associated with alterations in maternal circulating sVEGFR-1 or its placental production. The elimination of endogenous sVEGFR-1 after pregnancy was calculated from serial samples of eight pregnant women undergoing elective Caesarean section. As typical for proteins in human compartments, the elimination of sVEGFR-1 was biphasic, containing a rapid halflife of 3.4 h and a slow one of 29 h. The decline in sVEGFR-1 concentrations after mid-trimester legal termination of pregnancy was accompanied with a simultaneous increase in the serum levels of free VEGF so that within a few days after pregnancy VEGF dominated in the maternal circulation. Our study provides novel information on the kinetics of endogenous sVEGFR-1, which serves as a potential tool in the development of new strategies against diseases associated with angiogenic imbalance and alterations in VEGF signaling.
Resumo:
Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.
Resumo:
2-Methylcitric acid (2-MCA) cycle is one of the well studied pathways for the utilization of propionate as a source of carbon and energy in bacteria such as Salmonella typhimurium and Escherichia coli. 2-Methylcitrate synthase (2-MCS) catalyzes the conversion of oxaloacetate and propionyl-CoA to 2-methylcitrate and CoA in the second step of 2-MCA cycle. Here, we report the X-ray crystal structure of S. typhimurium 2-MCS (StPrpC) at 2.4 A resolution and its functional characterization. StPrpC was found to utilize propionyl-CoA more efficiently than acetyl-CoA or butyryl-CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. In the triclinic P1 cell, StPrpC molecules were organized as decamers composed of five identical dimer units. In solution, StPrpC was in a dimeric form at low concentrations and was converted to larger oligomers at higher concentrations. CSs are usually dimeric proteins. In Gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coil CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural comparison with the ligand free and bound states of CSs showed that StPrpC is in a nearly closed conformation despite the absence of bound ligands. It was found that the Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might determine the specificities for acyl-CoAs of these enzymes. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Integral membrane proteins have one or more transmembrane a-helical domains and carry out a variety of functions such as enzyme catalysis, transport across membranes, transducing signals as receptors of hormones and growth factors, and energy transfer in ATP synthesis. These transmembrane domains are not mere structural units anchoring the protein to the lipid bilayer but seem to-contribute in the overall activity. Recent findings in support of this are described using some typical examples-LDL receptor, growth factor receptor tyrosine kinase, HMG-CoA reductase, F-0-ATPase and adrenergic receptors. The trends in research indicate that these transmembrane domains participate in a variety of ways such as a linker, a transducer or an exchanger in the overall functions of these proteins in transfer of materials, energy and signals.
Resumo:
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.