835 resultados para distributed databases


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliable evaluation of the flood forecasting is a crucial problem for assessing flood risk and consequent damages. Different hydrological models (distributed, semi-distributed or lumped) have been proposed in order to deal with this issue. The choice of the proper model structure has been investigated by many authors and it is one of the main sources of uncertainty for a correct evaluation of the outflow hydrograph. In addition, the recent increasing of data availability makes possible to update hydrological models as response of real-time observations. For these reasons, the aim of this work it is to evaluate the effect of different structure of a semi-distributed hydrological model in the assimilation of distributed uncertain discharge observations. The study was applied to the Bacchiglione catchment, located in Italy. The first methodological step was to divide the basin in different sub-basins according to topographic characteristics. Secondly, two different structures of the semi-distributed hydrological model were implemented in order to estimate the outflow hydrograph. Then, synthetic observations of uncertain value of discharge were generated, as a function of the observed and simulated value of flow at the basin outlet, and assimilated in the semi-distributed models using a Kalman Filter. Finally, different spatial patterns of sensors location were assumed to update the model state as response of the uncertain discharge observations. The results of this work pointed out that, overall, the assimilation of uncertain observations can improve the hydrologic model performance. In particular, it was found that the model structure is an important factor, of difficult characterization, since can induce different forecasts in terms of outflow discharge. This study is partly supported by the FP7 EU Project WeSenseIt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed energy and water balance models require time-series surfaces of the meteorological variables involved in hydrological processes. Most of the hydrological GIS-based models apply simple interpolation techniques to extrapolate the point scale values registered at weather stations at a watershed scale. In mountainous areas, where the monitoring network ineffectively covers the complex terrain heterogeneity, simple geostatistical methods for spatial interpolation are not always representative enough, and algorithms that explicitly or implicitly account for the features creating strong local gradients in the meteorological variables must be applied. Originally developed as a meteorological pre-processing tool for a complete hydrological model (WiMMed), MeteoMap has become an independent software. The individual interpolation algorithms used to approximate the spatial distribution of each meteorological variable were carefully selected taking into account both, the specific variable being mapped, and the common lack of input data from Mediterranean mountainous areas. They include corrections with height for both rainfall and temperature (Herrero et al., 2007), and topographic corrections for solar radiation (Aguilar et al., 2010). MeteoMap is a GIS-based freeware upon registration. Input data include weather station records and topographic data and the output consists of tables and maps of the meteorological variables at hourly, daily, predefined rainfall event duration or annual scales. It offers its own pre and post-processing tools, including video outlook, map printing and the possibility of exporting the maps to images or ASCII ArcGIS formats. This study presents the friendly user interface of the software and shows some case studies with applications to hydrological modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.winthrop.edu/dacusfocus/1027/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelos de tomada de decisão necessitam refletir os aspectos da psi- cologia humana. Com este objetivo, este trabalho é baseado na Sparse Distributed Memory (SDM), um modelo psicologicamente e neuro- cientificamente plausível da memória humana, publicado por Pentti Kanerva, em 1988. O modelo de Kanerva possui um ponto crítico: um item de memória aquém deste ponto é rapidamente encontrado, e items além do ponto crítico não o são. Kanerva calculou este ponto para um caso especial com um seleto conjunto de parâmetros (fixos). Neste trabalho estendemos o conhecimento deste ponto crítico, através de simulações computacionais, e analisamos o comportamento desta “Critical Distance” sob diferentes cenários: em diferentes dimensões; em diferentes números de items armazenados na memória; e em diferentes números de armazenamento do item. Também é derivada uma função que, quando minimizada, determina o valor da “Critical Distance” de acordo com o estado da memória. Um objetivo secundário do trabalho é apresentar a SDM de forma simples e intuitiva para que pesquisadores de outras áreas possam imaginar como ela pode ajudá-los a entender e a resolver seus problemas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A collection of 237,954 sugarcane ESTs was examined in search of signal transduction genes. Over 3,500 components involved in several aspects of signal transduction, transcription, development, cell cycle, stress responses and pathogen interaction were compiled into the Sugarcane Signal Transduction (SUCAST) Catalogue. Sequence comparisons and protein domain analysis revealed 477 receptors, 510 protein kinases, 107 protein phosphatases, 75 small GTPases, 17 G-proteins, 114 calcium and inositol metabolism proteins, and over 600 transcription factors. The elements were distributed into 29 main categories subdivided into 409 sub-categories. Genes with no matches in the public databases and of unknown function were also catalogued. A cDNA microarray was constructed to profile individual variation of plants cultivated in the field and transcript abundance in six plant organs (flowers, roots, leaves, lateral buds, and 1(st) and 4(th) internodes). From 1280 distinct elements analyzed, 217 (17%) presented differential expression in two biological samples of at least one of the tissues tested. A total of 153 genes (12%) presented highly similar expression levels in all tissues. A virtual profile matrix was constructed and the expression profiles were validated by real-time PCR. The expression data presented can aid in assigning function for the sugarcane genes and be useful for promoter characterization of this and other economically important grasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sharing of knowledge and integration of data is one of the biggest challenges in health and essential contribution to improve the quality of health care. Since the same person receives care in various health facilities throughout his/her live, that information is distributed in different information systems which run on platforms of heterogeneous hardware and software. This paper proposes a System of Health Information Based on Ontologies (SISOnt) for knowledge sharing and integration of data on health, which allows to infer new information from the heterogeneous databases and knowledge base. For this purpose it was created three ontologies represented by the patterns and concepts proposed by the Semantic Web. The first ontology provides a representation of the concepts of diseases Secretariat of Health Surveillance (SVS) and the others are related to the representation of the concepts of databases of Health Information Systems (SIS), specifically the Information System of Notification of Diseases (SINAN) and the Information System on Mortality (SIM)