Understanding the critical distance in sparse distributed memory
Contribuinte(s) |
Linhares, Alexandre Goldszmidt, Rafael Guilherme Burstein Coelho, Flávio Codeço Oliveira, Paulo Murilo Castro de |
---|---|
Data(s) |
12/01/2015
12/01/2015
02/02/2012
|
Resumo |
Modelos de tomada de decisão necessitam refletir os aspectos da psi- cologia humana. Com este objetivo, este trabalho é baseado na Sparse Distributed Memory (SDM), um modelo psicologicamente e neuro- cientificamente plausível da memória humana, publicado por Pentti Kanerva, em 1988. O modelo de Kanerva possui um ponto crítico: um item de memória aquém deste ponto é rapidamente encontrado, e items além do ponto crítico não o são. Kanerva calculou este ponto para um caso especial com um seleto conjunto de parâmetros (fixos). Neste trabalho estendemos o conhecimento deste ponto crítico, através de simulações computacionais, e analisamos o comportamento desta “Critical Distance” sob diferentes cenários: em diferentes dimensões; em diferentes números de items armazenados na memória; e em diferentes números de armazenamento do item. Também é derivada uma função que, quando minimizada, determina o valor da “Critical Distance” de acordo com o estado da memória. Um objetivo secundário do trabalho é apresentar a SDM de forma simples e intuitiva para que pesquisadores de outras áreas possam imaginar como ela pode ajudá-los a entender e a resolver seus problemas. Models of decision-making need to reflect human psychology. Towards this end, this work is based on Sparse Distributed Memory (SDM), a psychologically and neuroscientifically plausible model of human memory, published by Pentti Kanerva in 1988. Kanerva‘s model of memory holds a critical point: prior to this point, a previously stored item can be easily retrieved; but beyond this point an item cannot be retrieved. Kanerva has methodically calculated this point for a particu- lar set of (fixed) parameters. Here we extend this knowledge, through computational simulations, in which we analyzed this critical point behavior under several scenarios: in several dimensions, in number of stored items in memory, and in number of times the item has been rehearsed. We also derive a function that, when minimized, determines the value of critical distance according to the state of the memory. A secondary goal is to present the SDM in a simple and intuitive way in order that researchers of other areas can think how SDM can help them to understand and solve their problems. |
Identificador | |
Idioma(s) |
en_US |
Palavras-Chave | #Memória - Simulação por computador #Computadores neurais #Inteligência artificial distribuída #Memória - Simulação por computador #Computadores neurais #Inteligência artificial distribuída |
Tipo |
Dissertation |