944 resultados para colorimetric assay of ethanol
Resumo:
A simple, sensitive and accurate spectrophotometric method was developed for the assay of gatifloxacin in raw material and tablets. Validation of the method yielded good results concerning range, linearity, precision and accuracy. The absorbance was measured at 287 nm for gatifloxacin tablet solutions. The linearity range was found to be 4.0-14.0 μg/mL for gatifloxacin. It was also found that the excipients in the commercial tablets did not interfere with the method.
Resumo:
A simple and reproducible method was developed for the assay of lomefloxacin in tablets. The excipients in the commercial tablet preparation did not interfere with the assay. Beer's law is obeyed in the range 2.0-9.0 μg.mL-1 at λmax 280 nm. The molar absorptivity was calculated. Six triplicate analyses of solutions containing six different concentrations of the examined drug were carried out and gave a mean correlation coefficient 0.9997. The proposed method was applied to the determination of the examined drug in coated tablet and the results demonstrated that the method is equally accurate, precise and reproducible as the official methods.
Resumo:
The characteristics, performance, and application of an electrode, namely, Pt|Hg|Hg 2(NAP) 2| Graphite, where NAP stands for naproxenate ion, are described. This electrode responds to NAP with sensivity of (58.1± 0.9) mV decade -1 over the range 5.0 × 10 -5 - 1.0 × 10 -2 mol L -1 at pH 6.0-9.0 and a detection limit of 3.9 × 10 -5 mol L -1. The electrode is easily constructed at a relatively low cost with fast response time (within 10-35 s) and can be used for a period of 6 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for naproxen in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used for the direct assay of naproxen in commercial tablets by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedure. ©2006 Sociedade Brasileira de Química.
Resumo:
The Arachis section is the most important of the nine sections of the genus Arachis because it includes the cultivated peanut, Arachis hypogaea. The genetic improvement of A. hypogaea using wild relatives is at an early stage of development in spite of their potential as sources of genes, including those for disease and pests resistance, that are not found in the A. hypogaea primary gene pool. Section Arachis species germplasm has been collected and maintained in gene banks and its use and effective conservation depends on our knowledge of the genetic variability contained in this material. Microsatellites are routinely used for the analysis of genetic variability because they are highly polymorphic and codominant. The objective of this study was to evaluate the transferability of microsatellite primers and the assay of genetic variability between and within the germplasm of some species of the Arachis section. Fourteen microsatellite loci developed for three different species of Arachis were analyzed and 11 (78%) were found to be polymorphic. All loci had transferability to all the species analyzed. The polymorphic loci were very informative, with expected heterozygosity per locus ranging from 0.70 to 0.94. In general, the germplasm analyzed showed wide genetic variation. © 2006 Sociedade Brasileira de Genética.
Resumo:
A specific and sensitive high-performance liquid chromatographic method was developed for the assay of praziquantel in raw materials and tablets. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay in the wavelenght selected. The method validation yielded good results and included the range, linearity, precision, accuracy, specificity and recovery.
Resumo:
Objective: The aim of this study was to evaluate the effect of the alcohol consumption on the periodontal bone support (PBS) in experimental periodontitis in rats. Materials and Methods: Sixty-three male rats were divided into seven groups: G1 (control); G2 (10% ethanol); G3 (nutritional control of G2); G4 (20% ethanol); G5 (nutritional control of G4); G6 (30% ethanol) and G7 (nutritional control of G6). The groups G3, G5 and G7 received controlled diets with equivalent caloric amounts to those consumed in G2, G4 and G6 respectively, with the ethanol replaced by sucrose. After anesthesia, ligatures were installed around the mandibular first molar, leaving the contralateral teeth unligated. After 8 weeks, the rats were killed and their mandibles were radiographed to measure the percentage of PBS on the distal aspect. Results: The intragroup analyses showed that presence of ligatures induced periodontitis (p<0.05). Unligated groups did not show significant differences among the percentages of PBS (p=0.1969). However, in ligated groups the rats that received alcohol (G2:48.71%±3.88; G4:47.66%±2.54; G6:47.32%±3.24) and the nutritional control group associated with a high concentration of ethanol (G7:47.40%±3.24) presented a significantly lower percentage of PBS than the other groups (G1:52.40%±2.75; G3:52.83%±2.41; G5:50.85%±4.14). Conclusions: These results demonstrated that alcohol consumption in rats may result in a direct effect on alveolar bone loss and increased development of periodontitis. In addition, they suggest that heavy caloric consumption of ethanol may also present an indirect effect on periodontal tissue as a consequence of malnutrition.
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Objective: To evaluate the antimicrobial activity and surface properties of an acrylic resin containing the biocide polymer poly (2-tert-butylaminoethyl) methacrylate (PTBAEMA). Background: Several approaches have been proposed to prevent oral infections, including the incorporation of antimicrobial agents to acrylic resins. Materials and methods: Specimens of an acrylic resin (Lucitone 550) were divided into two groups: 0% (control) and 10% PTBAEMA. Antimicrobial activity was assessed by adherence assay of one of the microorganisms, Staphylococcus aureus, Streptococcus mutans and Candida albicans. Surface topography was characterised by atomic force microscopy and wettability properties determined by contact angle measurements. Results: Data of viable cells (log (CFU + 1)/ml) for S. aureus (control: 7.9 ± 0.8; 10%: 3.8 ± 3.3) and S. mutans (control: 7.5 ± 0.7; 10%: 5.1 ± 2.7) showed a significant decrease with 10% of PTBAEMA (Mann-Whitney, p < 0.05). For C. albicans (control: 6.6 ± 0.2; 10%: 6.6 ± 0.4), there was no significant difference between control and 10% of PTBAEMA (Kruskal-Wallis, p > 0.05). Incorporating 10% PTBAEMA increased surface roughness and decreased contact angles. Conclusion: Incorporating 10% PTBAEMA into acrylic resins increases wettability and roughness of acrylic resin surface; and decreases the adhesion of S. mutans and S. aureus on acrylic surface, but did not exhibit antimicrobial effect against C. albicans. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Resumo:
Fluoxetine is used clinically as a racemic mixture of (+)-(S) and (-)-(R) enantiomers for the treatment of depression. CYP2D6 catalyzes the metabolism of both fluoxetine enantiomers. We aimed to evaluate whether exposure to gasoline results in CYP2D inhibition. Male Wistar rats exposed to filtered air (n = 36; control group) or to 600 ppm of gasoline (n = 36) in a nose-only inhalation exposure chamber for 6 weeks (6 h/day, 5 days/week) received a single oral 10-mg/kg dose of racemic fluoxetine. Fluoxetine enantiomers in plasma samples were analyzed by a validated analytical method using LC-MS/MS. The separation of fluoxetine enantiomers was performed in a Chirobiotic V column using as the mobile phase a mixture of ethanol:ammonium acetate 15 mM. Higher plasma concentrations of the (+)-(S)-fluoxetine enantiomer were found in the control group (enantiomeric ratio AUC(+)-(S)/(-)-(R) = 1.68). In animals exposed to gasoline, we observed an increase in AUC0-∞ for both enantiomers, with a sharper increase seen for the (-)-(R)-fluoxetine enantiomer (enantiomeric ratio AUC(+)-(S)/(-)-(R) = 1.07), resulting in a loss of enantioselectivity. Exposure to gasoline was found to result in the loss of enantioselectivity of fluoxetine, with the predominant reduction occurring in the clearance of the (-)-(R)-fluoxetine enantiomer (55% vs. 30%). Chirality 25:206-210, 2013. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.
Resumo:
The incidence of colorectal cancer is growing worldwide. The characterization of compounds present in the human diet that can prevent the occurrence of colorectal tumors is vital. The oligosaccharide inulin is such a compound. The aim of this study was to evaluate the antigenotoxic, antimutagenic and anticarcinogenic effects of inulin in vivo. Our study is based on 3 assays that are widely used to evaluate chemoprevention (comet assay, micronucleus assay, and aberrant crypt focus assay) and tests 4 protocols of treatment with inulin (pre-treatment, simultaneous, post-treatment, and pre + continuous). Experiments were carried out in Swiss male mice of reproductive age. In order to induce DNA damage, we used the pro-carcinogenic agent 1,2-dimethylhydrazine. Inulin was administered orally at a concentration of 50 mg/kg body weight following the protocols mentioned above. Inulin was not administered to the control groups. Our data from the micronucleus assay reveal antimutagenic effects of inulin in all protocols. The percentage of inulin-induced damage reduction ranged from 47.25 to 141.75% across protocols. These data suggest that inulin could act through desmutagenic and bio-antimutagenic mechanisms. The anticarcinogenic activity (aberrant crypt focus assay) of inulin was observed in all protocols and the percentages of damage reduction ranged from 55.78 to 87.56% across protocols. Further tests, including human trials, will be necessary before this functional food can be proven to be effective in the prevention and treatment of colon cancer. © FUNPEC-RP.
Resumo:
Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd: Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3-5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd: Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 900 C, and the best performance of 44 mW cm-2 in 2.0molL-1 ethanol was obtained at 850C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical-chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOA