945 resultados para Walton, Izaak, 1593-1683.
Resumo:
Banco del conocimiento
Resumo:
Banco del conocimiento
Resumo:
Back Row: John MacNeil (Coach), John MacNail Jr, John Murray, Joel Walton, Frank Cipriano, Benny Grossi, Rino Berardi, Louis Famelos, Doug Rowan, Ron Di Felice Front Row: Ivan Hunt, Roger Vanoostveen, Dave Gibson, Joe Perri, Kent Mayhew, Jim Baldassarro, Guenther Baur Absent: Neil Dunsmore
Resumo:
1980/1981 season. Pictured here are Joel Walton (#4) and Tony Carboni (#13).
Resumo:
Background: Lung cancer (LC) is the leading cause of cancer death in the developed world. Most cancers are associated with tobacco smoking. A primary hope for reducing lung cancer has been prevention of smoking and successful smoking cessation programs. To date, these programs have not been as successful as anticipated. Objective: The aim of the current study was to evaluate whether lung cancer screening combining low dose computed tomography with autofluorescence bronchoscopy (combined CT & AFB) is superior to CT or AFB screening alone in improving lung cancer specific survival. In addition, the extent of improvement and ideal conditions for combined CT & AFB screening were evaluated. Methods: We applied decision analysis and Monte Carlo simulation modeling using TreeAge Software to evaluate our study aims. Histology- and stage specific probabilities of lung cancer 5-year survival proportions were taken from Surveillance and Epidemiologic End Results (SEER) Registry data. Screeningassociated data was taken from the US NCI Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO), National Lung Screening Trial (NLST), and US NCI Lung Screening Study (LSS), other relevant published data and expert opinion. Results: Decision Analysis - Combined CT and AFB was the best approach at Improving 5-year survival (Overall Expected Survival (OES) in the entire screened population was 0.9863) and in lung cancer patients only (Lung Cancer Specific Expected Survival (LOSES) was 0.3256). Combined screening was slightly better than CT screening alone (OES = 0.9859; LCSES = 0.2966), and substantially better than AFB screening alone (OES = 0.9842; LCSES = 0.2124), which was considerably better than no screening (OES = 0.9829; LCSES = 0.1445). Monte Carlo simulation modeling revealed that expected survival in the screened population and lung cancer patients is highest when screened using CT and combined CT and AFB. CT alone and combined screening was substantially better than AFB screening alone or no screening. For LCSES, combined CT and AFB screening is significantly better than CT alone (0.3126 vs. 0.2938, p< 0.0001). Conclusions: Overall, these analyses suggest that combined CT and AFB is slightly better than CT alone at improving lung cancer survival, and both approaches are substantially better than AFB screening alone or no screening.
Hydraulic and fluvial geomorphological models for a bedrock channel reach of the Twenty Mile Creek /
Resumo:
Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Parasitología) UANL
Resumo:
Tesis (Maestría en Sistemas de Información) UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL