905 resultados para PEPTIDE-PROTEIN INTERACTION
Resumo:
Signal recognition particle (SRP) and signal recognition particle receptor (SR) are evolutionarily conserved GTPases that deliver secretory and membrane proteins to the protein-conducting channel Sec61 complex in the lipid bilayer of the endoplasmic reticulum in eukaryotes or the SecYEG complex in the inner membrane of bacteria. Unlike the canonical Ras-type GTPases, SRP and SR are activated via nucleotide-dependent heterodimerization. Upon formation of the SR•SRP targeting complex, SRP and SR undergo a series of discrete conformational changes that culminate in their reciprocal activation and hydrolysis of GTP. How the SR•SRP GTPase cycle is regulated and coupled to the delivery of the cargo protein to the protein-conducting channel at the target membrane is not well-understood. Here we examine the role of the lipid bilayer and SecYEG in regulation of the SRP-mediated protein targeting pathway and show that they serve as important biological cues that spatially control the targeting reaction.
In the first chapter, we show that anionic phospholipids of the inner membrane activate the bacterial SR, FtsY, and favor the late conformational states of the targeting complex conducive to efficient unloading of the cargo. The results of our studies suggest that the lipid bilayer acts as a spatial cue that weakens the interaction of the cargo protein with SRP and primes the complex for unloading its cargo onto SecYEG.
In the second chapter, we focus on the effect of SecYEG on the conformational states and activity of the targeting complex. While phospholipids prime the complex for unloading its cargo, they are insufficient to trigger hydrolysis of GTP and the release of the cargo from the complex. SecYEG modulates the conformation of the targeting complex and triggers the GTP hydrolysis from the complex, thus driving the targeting reaction to completion. The results of this study suggest that SecYEG is not a passive recipient of the cargo protein; rather, it actively releases the cargo from the targeting complex. Together, anionic phospholipids and SecYEG serve distinct yet complementary roles. They spatially control the targeting reaction in a sequential manner, ensuring efficient delivery and unloading of the cargo protein.
In the third chapter, we reconstitute the transfer reaction in vitro and visualize it in real time. We show that the ribosome-nascent chain complex is transferred to SecYEG via a stepwise mechanism with gradual dissolution and formation of the contacts with SRP and SecYEG, respectively, explaining how the cargo is kept tethered to the membrane during the transfer and how its loss to the cytosol is avoided.
In the fourth chapter, we examine interaction of SecYEG with secretory and membrane proteins and attempt to address the role of a novel insertase YidC in this interaction. We show that detergent-solubilized SecYEG is capable of discriminating between the nascent chains of various lengths and engages a signal sequence in a well-defined conformation in the absence of accessory factors. Further, YidC alters the conformation of the signal peptide bound to SecYEG. The results described in this chapter show that YidC affects the SecYEG-nascent chain interaction at early stages of translocation/insertion and suggest a YidC-facilitated mechanism for lateral exit of transmembrane domains from SecYEG into the lipid bilayer.
Resumo:
The proper targeting of membrane proteins is essential to the viability of all cells. Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C-terminus, are post-translationally targeted to the endoplasmic reticulum (ER) membrane by the GET pathway (Guided Entry of TA proteins). In the yeast pathway, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 (Get4/5) complex, which tethers the co-chaperone Sgt2 to the central targeting factor, the Get3 ATPase. Although binding of Get4/5 to Get3 is critical for efficient TA targeting, the mechanisms by which Get4 regulates Get3 are unknown. To understand the molecular basis of Get4 function, we used a combination of structural biology, biochemistry, and cell biology. Get4/5 binds across the Get3 dimer interface, in an orientation only compatible with a closed Get3, providing insight into the role of nucleotide in complex formation. Additionally, this structure reveals two functionally distinct binding interfaces for anchoring and ATPase regulation, and loss of the regulatory interface leads to strong defects in vitro and in vivo. Additional crystal structures of the Get3-Get4/5 complex give rise to an alternate conformation, which represents an initial binding interaction mediated by electrostatics that facilitates the rate of subsequent inhibited complex formation. This interface is supported by an in-depth kinetic analysis of the Get3-Get4/5 interaction confirming the two-step complex formation. These results allow us to generate a refined model for Get4/5 function in TA targeting.
Resumo:
Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid-interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions.
Resumo:
Four species of Gracilaria are investigated for their free amino-acid contents, as well as amino-acid constituents in the proteins and the peptides, using quantitative paper chromatographic technique. Amino-acid constituents of different species of Gracilaria differ only in amount, while free amino-acids and the amino-acids in the peptides vary both in quality and quantity. A number of amino-acids recorded as protein constituents have even escaped detection in the peptides, while in the free state they occur either in all the species or in some only except homocystine. Moreover, some amino-acids occur exclusively in the free state.
Resumo:
A blood coagulation factor IX-binding protein (TSV-FIX-BP) was isolated from the snake venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-FIX-BP showed a single band with an apparent molecular weight of 23,000 under non-reducing conditions. and two distinct bands with apparent molecular weights of 14,800 and 14,000 under reducing conditions. cDNA clones containing the coding sequences of TSV-FIX-BP were isolated and sequenced to determine the structure of the precusors of TSV-FIX-BP subunits. The deduced amino acid sequences of two subunits of TSV-FIX-BP were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. TSV-FIX-BP was a nonenzymatic C-type lectin-like anti-coagulant. The anti-coagulant activity of TSV-FIX-BP was mainly caused by its dose dependent interaction with blood coagulation factor IX but not with blood coagulation factor X. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The role of the collagen-platelet interaction is of crucial importance to the haemostatic response during both injury and pathogenesis of the blood vessel wall. Of particular interest is the high affinity interaction of the platelet transmembrane receptor, alpha 2 beta 1, responsible for firm attachment of platelets to collagen at and around injury sites. We employ single molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) to study the interaction of the I-domain from integrin alpha 2 beta 1 with a synthetic collagen related triple-helical peptide containing the high-affinity integrin-binding GFOGER motif, and a control peptide lacking this sequence, referred to as GPP. By utilising synthetic peptides in this manner we are able to study at the molecular level subtleties that would otherwise be lost when considering cell-to-collagen matrix interactions using ensemble techniques. We demonstrate for the first time the complexity of this interaction as illustrated by the complex multi-peaked force spectra and confirm specificity using control blocking experiments. In addition we observe specific interaction of the GPP peptide sequence with the I-domain. We propose a model to explain these observations.
Resumo:
In vertebrates, folliculogeneis establishes an intricate system for somatic cell-oocyte interaction, and ultimately leads to the acquisition of their respective competences. Although the formation process and corresponding interactions are strikingly similar in diverse organisms, knowledge of genes and signaling pathways involved in follicle formation is very incomplete and the underlying molecular mechanisms remain enigmatic. CNBP has been identified for more than ten years, and the highest level of CNBP transcripts has been observed in adult zebrafish ovary, but little is known about its functional significance during folliculogeneis and oogenesis. In this study, we clone CNBP cDNA from gibel carp (Carassius auratus gibelio), and demonstrate its predominant expression in gibel carp ovary and testis not only by RTPCR but also by Western blot. Its full-length cDNA is 1402 bp, and has an ORF of 489 nt for encoding a peptide of 163 aa. And its complete amino acid sequence shared 68.5%-96.8% identity with CNBPs from other vertebrates. Based on the expression characterization, we further analyze its expression pattern and developmental behaviour during folliculogeneis and oogenesis. Following these studies, we reveal an unexpected discovery that the CagCNBP is associated with follicular cells and oocytes, and significant distribution changes have occurred in degenerating and regenerating follicles. More interestingly, the CagCNBP is more highly expressed in some clusters of interconnected cells within ovarian cysts, no matter whether the cell clusters are formed from the original primordial germ cells or from the newly formed cells from follicular cells that invaded into the atretic oocytes. It is the first time to reveal CNBP relevance to folliculogeneis and oogenesis. Moreover, a similar stage-specific and cell-specific expression pattern has also been observed in the gibel carp testis. Therefore, further studies on CNBP expression pattern and developmental behaviour will be of significance for understanding functional roles of CNBP during gametogenests. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
p21 is a protein with important roles in cell proliferation, cell cycle regulation and apoptosis. Several studies have demonstrated that its intracellular localization plays an important role in the functional regulation and binding of calmodulin favors its nuclear translocation. However, the detail mechanism of the interaction with p21 and calmodulin is not well understood. In this report, peptides derived from the C-terminal of p21 that cover the binding domain of calmodulin were used to investigate the association of p21 with calmodulin.
Resumo:
Studies on the bounding character of rare earth ions with borine serum albumin(BSA) are significant for understanding the state of rare earth ions in body and their effects on the structure and function of protein. The fluorescence spectrum and pH potentiometry showed consistent results of apparent complexion constant of Tb-2 . BSA. The equilibrium dialysis showed that there are two specific binding sites and more than six non-specific binding sites of RE ions onto BSA molecule with the conditional stable constants lg K-1 = 5. 157 and lgK(2) = 3. 435. Na-23 NMR studies revealed that the BSA peptide chain bound to RE ions was expanded and the mobility of its molecular backbone was increased.
Resumo:
Interaction of traditional Chinese Herb Rhizoma Chuanxiong and protein was studied by microdialysis coupled with high performance liquid chromatography. Compounds in Rhizoma Chuanxiong, such as ferulic acid, senkyunolide A and 3-butylphthalide, were identified by HPLC, HPLC-MS and UV-vis. Microdialysis recoveries and binding degrees of compounds in Rhizoma Chuanxiong with human serum albumin (HSA) and other human plasma protein were determined: recoveries of microdialysis sampling ranged from 36.7 to 98.4% with R.S.D. below 3.1%; while binding to HSA ranged from 0 to 91.5% (0.3 mM HSA) and from 0 to 93.5% (0.6 mM HSA), respectively. Compared with HSA, most of compounds bound to human blood serum more extensively and the results showed that binding of these compounds in Rhizoma Chuanxiong was influenced by pH. Two compounds were found to bind to HSA and human blood serum. their binding degrees were consistent with ferulic acid and 3-butylphthalide, the active compounds in Rhizoma Chuanoxiong. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In recent years, extensive research has been carried out on the health benefits of milk proteins and peptides. Biologically active peptides are defined as specific protein fragments which have a positive impact on the physiological functions of the body; such peptides are produced naturally in vivo, but can also be generated by physical and/or chemical processes, enzymatic hydrolysis and/or microbial fermentation. The aims of this thesis were to investigate not only the traditional methods used for the generation of bioactive peptides, but also novel processes such as heat treatment, and the role of indigenous milk proteases, e.g., in mastitic milk, in the production of such peptides. In addition, colostrum was characterised as a source of bioactive proteins and peptides. Firstly, a comprehensive study was carried out on the composition and physical properties of colostrum throughout the early-lactation period. Marked differences in the physico-chemical properties of colostrum compared with milk were observed. Various fractions of colostrum were also tested for their effect on the secretion of pro- and anti-inflammatory cytokines from a macrophage cell line and bone marrow dendritic cells, as well as insulin secretion from a pancreatic beta cell line. A significant reduction in the secretion of the pro-inflammatory cytokines, TNF-α, IL-6, IL-1β and IL-12, a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, as well as a significant increase in insulin secretion were observed for various colostrum fractions. Another study examined the early proteomic changes in the milk of 8 cows in response to infusion with the endotoxin lipopolysaccharide (LPS) at quarter level in a model mastitic system; marked differences in the protein and peptide profile of milk from LPS challenged cows were observed, and a pH 4.6-soluble fraction of this milk was found to cause a substantial induction in the secretion of IL-10 from a murine macrophage cell line. Heat-induced hydrolysis of sodium caseinate was investigated from the dual viewpoints of protein breakdown and peptide formation, and, a peptide fraction produced in this manner was found to cause a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, from a murine macrophage cell line. The effects of sodium caseinate hydrolysed by chymosin on the gut-derived satiety hormone glucagon-like peptide-1 (GLP-1) were investigated; the resulting casein-derived peptides displayed good in vitro and in vivo secretion of GLP-1. Overall, the studies described in this thesis expand on current knowledge and provide good evidence for the use of novel methods for the isolation, generation and characterisation of bioactive proteins and/or peptides.
Resumo:
Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.