973 resultados para Individual ability
Resumo:
Interactions among individuals give rise to both cooperation and conflict. Individuals will behave selfishly or altruistically depending on which gives the higher payoff. The reproductive strategies of many animals are flexible and several alternative tactics may be present from which the most suitable one is applied. Generally, alternative reproductive tactics may be defined as a response to competition from individuals of the same sex. These alternative reproductive tactics are means by which individuals may fine-tune their fitness to the reigning circumstances and which are shaped by the environment individuals are occupying as well as by the behaviour of other individuals sharing the environment. By employing such alternative ways of achieving reproductive output, individuals may alleviate competition from others. Conspecific brood parasitism (CBP) is an alternative reproductive strategy found in several egg laying animal groups, and it is especially common among waterfowl. Within this alternative reproductive strategy, four reproductive options can be identified. These four options represent a continuum from low reproductive effort coupled with low fitness returns, to high reproductive effort and consequently high benefits. It may not be evident how individuals should allocate reproductive effort between eggs laid in their own nest vs. in nests of others, however. Limited fecundity will constrain the number of eggs donated by a parasite, but also the tendency for hosts to accept parasitic eggs may affect the allocation decision. Furthermore, kinship, individual quality and the costs of breeding may play a role in complicating the allocation decision. In this thesis, I view the seemingly paradoxical effects of kinship on conflict resolution in the context of alternative reproductive tactics, examining the resulting features of cooperation and conflict. Conspecific brood parasitism sets the stage for investigating these questions. By using both empirical and theoretical approaches, I examine the nature of CBP in a brood parasitic duck, the Barrow's goldeneye (Bucephala islandica). The theoretical chapter of this thesis gives rise to four main conclusions. Firstly, variation in individual quality plays a central role in shaping breeding strategies. Secondly, kinship plays a central role in the evolution of CBP. Thirdly, egg recognition ability may affect the prevalence of parasitism. If egg recognition is perfect, higher relatedness between host and parasite facilitates CBP. Finally, I show that the relative costs of egg laying and post-laying care play a so far underestimated role in determining the prevalence of parasitism. The costs of breeding may outweigh possible inclusive fitness benefits accrued from receiving eggs from relatives. Several of the patterns brought out by the theoretical work are then confirmed empirically in the following chapters. Findings include confirmation of the central role of relatedness in determining the extent of parasitism as well as inducing a counterintuitive host clutch reduction. Furthermore, I demonstrate a cost of CBP inflicted on hosts, as well as results suggesting that host age reflects individual quality, affecting the ability to overcome costs inflicted by CBP. In summary, I demonstrate both theoretically and empirically the presence of cooperation and conflict in the interactions between conspecific parasites and their hosts. The field of CBP research has traditionally been divided, but the first steps have now been taken toward the acceptance of the opposite side of the divide. Especially the theoretical findings of chapter 1 offer the possibility to view seemingly contrasting results of various studies within the same framework, and may direct future research toward more general features underlying differences in the patterns of CBP between populations or species.
Resumo:
Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.
Resumo:
In the studies reported so far on dendrimer-mediated catalysis, the efficacies of the catalytic units were studied and compared primarily across the generations. In order to identify the efficacy of an individual catalytic unit with respect to the number of such units present within a given generation, a series of catalysts were prepared within a generation. Dendrimers incorporated with phosphinemetal complexes were chosen for the study and as many as 11 catalysts within three generations were synthesized. The C-C bond-forming reactions, namely, the Heck and the Suzuki coupling reactions, were then selected to study the catalytic efficiencies of the series of partially and fully phosphine-metal complex functionalized dendrimers. The efficacies of the formation of cinnamate and biphenyl. catalyzed by the dendritic catalysts, were compared. The comparative analyses show that an individual catalytic site is far more effective in its catalytic activity when presented in multiple numbers, i.e., in a multivalent dendritic system, than as a single unit within the same generation, i.e., in a monovalent dendritic system. The study identifies the beneficial effects of the multivalent presentation of the catalytic moieties, both within and across the dendrimer generations.
Resumo:
Assessment of the outcome of critical illness is complex. Severity scoring systems and organ dysfunction scores are traditional tools in mortality and morbidity prediction in intensive care. Their ability to explain risk of death is impressive for large cohorts of patients, but insufficient for an individual patient. Although events before intensive care unit (ICU) admission are prognostically important, the prediction models utilize data collected at and just after ICU admission. In addition, several biomarkers have been evaluated to predict mortality, but none has proven entirely useful in clinical practice. Therefore, new prognostic markers of critical illness are vital when evaluating the intensive care outcome. The aim of this dissertation was to investigate new measures and biological markers of critical illness and to evaluate their predictive value and association with mortality and disease severity. The impact of delay in emergency department (ED) on intensive care outcome, measured as hospital mortality and health-related quality of life (HRQoL) at 6 months, was assessed in 1537 consecutive patients admitted to medical ICU. Two new biological markers were investigated in two separate patient populations: in 231 ICU patients and 255 patients with severe sepsis or septic shock. Cell-free plasma DNA is a surrogate marker of apoptosis. Its association with disease severity and mortality rate was evaluated in ICU patients. Next, the predictive value of plasma DNA regarding mortality and its association with the degree of organ dysfunction and disease severity was evaluated in severe sepsis or septic shock. Heme oxygenase-1 (HO-1) is a potential regulator of apoptosis. Finally, HO-1 plasma concentrations and HO-1 gene polymorphisms and their association with outcome were evaluated in ICU patients. The length of ED stay was not associated with outcome of intensive care. The hospital mortality rate was significantly lower in patients admitted to the medical ICU from the ED than from the non-ED, and the HRQoL in the critically ill at 6 months was significantly lower than in the age- and sex-matched general population. In the ICU patient population, the maximum plasma DNA concentration measured during the first 96 hours in intensive care correlated significantly with disease severity and degree of organ failure and was independently associated with hospital mortality. In patients with severe sepsis or septic shock, the cell-free plasma DNA concentrations were significantly higher in ICU and hospital nonsurvivors than in survivors and showed a moderate discriminative power regarding ICU mortality. Plasma DNA was an independent predictor for ICU mortality, but not for hospital mortality. The degree of organ dysfunction correlated independently with plasma DNA concentration in severe sepsis and plasma HO-1 concentration in ICU patients. The HO-1 -413T/GT(L)/+99C haplotype was associated with HO-1 plasma levels and frequency of multiple organ dysfunction. Plasma DNA and HO-1 concentrations may support the assessment of outcome or organ failure development in critically ill patients, although their value is limited and requires further evaluation.
Resumo:
Exposure to water-damaged buildings and the associated health problems have evoked concern and created confusion during the past 20 years. Individuals exposed to moisture problem buildings report adverse health effects such as non-specific respiratory symptoms. Microbes, especially fungi, growing on the damp material have been considered as potential sources of the health problems encountered in these buildings. Fungi and their airborne fungal spores contain allergens and secondary metabolites which may trigger allergic as well as inflammatory types of responses in the eyes and airways. Although epidemiological studies have revealed an association between damp buildings and health problems, no direct cause-and-effect relationship has been established. Further knowledge is needed about the epidemiology and the mechanisms leading to the symptoms associated with exposure to fungi. Two different approaches have been used in this thesis in order to investigate the diverse health effects associated with exposure to moulds. In the first part, sensitization to moulds was evaluated and potential cross-reactivity studied in patients attending a hospital for suspected allergy. In the second part, one typical mould known to be found in water-damaged buildings and to produce toxic secondary metabolites was used to study the airway responses in an experimental model. Exposure studies were performed on both naive and allergen sensitized mice. The first part of the study showed that mould allergy is rare and highly dependent on the atopic status of the examined individual. The prevalence of sensitization was 2.7% to Cladosporium herbarum and 2.8% to Alternaria alternata in patients, the majority of whom were atopic subjects. Some of the patients sensitized to mould suffered from atopic eczema. Frequently the patients were observed to possess specific serum IgE antibodies to a yeast present in the normal skin flora, Pityrosporum ovale. In some of these patients, the IgE binding was partly found to be due to binding to shared glycoproteins in the mould and yeast allergen extracts. The second part of the study revealed that exposure to Stachybotrys chartarum spores induced an airway inflammation in the lungs of mice. The inflammation was characterized by an influx of inflammatory cells, mainly neutrophils and lymphocytes, into the lungs but with almost no differences in airway responses seen between the satratoxin producing and non-satratoxin producing strain. On the other hand, when mice were exposed to S. chartarum and sensitized/challenged with ovalbumin the extent of the inflammation was markedly enhanced. A synergistic increase in the numbers of inflammatory cells was seen in BAL and severe inflammation was observed in the histological lung sections. In conclusion, the results in this thesis imply that exposure to moulds in water damaged buildings may trigger health effects in susceptible individuals. The symptoms can rarely be explained by IgE mediated allergy to moulds. Other non-allergic mechanisms seem to be involved. Stachybotrys chartarum is one of the moulds potentially responsible for health problems. In this thesis, new reaction models for the airway inflammation induced by S. chartarum have been found using experimental approaches. The immunological status played an important role in the airway inflammation, enhancing the effects of mould exposure. The results imply that sensitized individuals may be more susceptible to exposure to moulds than non-sensitized individuals.
Resumo:
Technology is increasingly infiltrating all aspects of our lives and the rapid uptake of devices that live near, on or in our bodies are facilitating radical new ways of working, relating and socialising. This distribution of technology into the very fabric of our everyday life creates new possibilities, but also raises questions regarding our future relationship with data and the quantified self. By embedding technology into the fabric of our clothes and accessories, it becomes ‘wearable’. Such ‘wearables’ enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis. While the rapid uptake of wearables may offer unique and innovative opportunities, there are also concerns surrounding the high levels of data sharing that come as a consequence of these technologies. As more ‘smart’ devices connect to the Internet, and as technology becomes increasingly available (e.g. via Wi-Fi, Bluetooth), more products, artefacts and things are becoming interconnected. This digital connection of devices is called The ‘Internet of Things’ (IoT). IoT is spreading rapidly, with many traditionally non-online devices becoming increasingly connected; products such as mobile phones, fridges, pedometers, coffee machines, video cameras, cars and clothing. The IoT is growing at a rapid rate with estimates indicating that by 2020 there will be over 25 billion connected things globally. As the number of devices connected to the Internet increases, so too does the amount of data collected and type of information that is stored and potentially shared. The ability to collect massive amounts of data - known as ‘big data’ - can be used to better understand and predict behaviours across all areas of research from societal and economic to environmental and biological. With this kind of information at our disposal, we have a more powerful lens with which to perceive the world, and the resulting insights can be used to design more appropriate products, services and systems. It can however, also be used as a method of surveillance, suppression and coercion by governments or large organisations. This is becoming particularly apparent in advertising that targets audiences based on the individual preferences revealed by the data collected from social media and online devices such as GPS systems or pedometers. This type of technology also provides fertile ground for public debates around future fashion, identity and broader social issues such as culture, politics and the environment. The potential implications of these type of technological interactions via wearables, through and with the IoT, have never been more real or more accessible. But, as highlighted, this interconnectedness also brings with it complex technical, ethical and moral challenges. Data security and the protection of privacy and personal information will become ever more present in current and future ethical and moral debates of the 21st century. This type of technology is also a stepping-stone to a future that includes implantable technology, biotechnologies, interspecies communication and augmented humans (cyborgs). Technologies that live symbiotically and perpetually in our bodies, the built environment and the natural environment are no longer the stuff of science fiction; it is in fact a reality. So, where next?... The works exhibited in Wear Next_ provide a snapshot into the broad spectrum of wearables in design and in development internationally. This exhibition has been curated to serve as a platform for enhanced broader debate around future technology, our mediated future-selves and the evolution of human interactions. As you explore the exhibition, may we ask that you pause and think to yourself, what might we... Wear Next_? WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1
Resumo:
BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.
Resumo:
The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.
Resumo:
The purpose of this work was to elucidate the ontogeny of interleukin-10 (IL-10) secretion from newborn mononuclear cells (MCs), and to examine its relation to the secretion of interferon-g (IFN-g) and immunoglobulins (Igs). The initial hypothesis was that the decreased immunoglobulin (Ig) synthesis of newborn babies was the result of immature cytokine synthesis regulation, which would lead to excessive IL-10 production, leading in turn to suppressed IFN-g secretion. Altogether 57 full-term newborns and 34 adult volunteers were enrolled. Additionally, surface marker compositions of 29 premature babies were included. Enzyme-linked immunoassays were used to determine the amount of secreted IL-10, IFN-g, and Igs, and the surface marker composition of MC were analyzed with a FACScan flow cytometer. The three most important findings were: 1. Cord blood MC, including CD5+ B cells, are able to secrete IL-10. However, when compared with adults, the secretion of IL-10 was decreased. This indicates that reasons other than excessive IL-10 secretion are responsible of reduced IFN-g secretion in newborns. 2. As illustrated by the IL-10 and IFN-g secretion pattern, newborn cytokine profile was skewed towards the Th2 type. However, approximately 25% of newborns had an adult like cytokine profile with both good IL10 and IFN-g secretion, demonstrating that fullterm newborns are not an immunologically homogenous group at the time of birth. 3. There were significant differences in the surface marker composition of MCs between individual neonates. While gestational age correlated with the proportion of some MC types, it is evident that there are many other maternal and fetal factors that influence the maturity and nature of lymphocyte subpopulations in individual neonates. In conclusion, the reduced ability of neonates to secrete Ig and IFN-g is not a consequence of high IL-10 secretion. However, individual newborns differ significantly in their ability to secrete cytokines as well as Igs.
Resumo:
Antiplatelet medication is known to decrease adverse effects in patients with atherothrombotic disease. However, despite ongoing antiplatelet medication considerable number of patients suffer from atherothrombotic events. The aims of the study were 1) to evaluate the individual variability in platelet functions and compare the usability of different methods in detecting it, 2) to assess variability in efficacy of antiplatelet medication with aspirin (acetylsalicylic acid) or the combination of aspirin and clopidogrel and 3) to investigate the main genetic and clinical variables as well as potential underlying mechanisms of variability in efficacy of antiplatelet medication. In comparisons of different platelet function tests in 19 healthy individuals PFA-100® correlated with traditional methods of measuring platelet function and was thus considered appropriate for testing individual variability in platelet activity. Efficacy of ongoing 100mg aspirin daily was studied in 101 patients with coronary artery disease (CAD). Aspirin response was measured with arachidonic acid (AA)-induced platelet aggregation, which reflects cyclo-oxygenase (COX)-1 dependent thromboxane (Tx) A2 formation, and PFA-100®, which evaluates platelet activation under high shear stress in the presence of collagen and epinephrine. Five percent of patients failed to show inhibition of AA-aggregation and 21% of patients had normal PFA-100® results despite aspirin and were thus considered non-responders to aspirin. Interestingly, the two methods of assessing aspirin efficacy, platelet aggregation and PFA-100®, detected different populations as being aspirin non-responders. It could be postulated that PFA-100® actually measures enhanced platelet function, which is not directly associated with TxA2 inhibition exerted by aspirin. Clopidogrel efficacy was assessed in 50 patients who received a 300mg loading dose of clopidogrel 2.5 h prior to percutaneous coronary intervention (PCI) and in 51 patients who were given a loading dose of 300mg combined with a five day treatment of 75mg clopidogrel daily mimicking ongoing treatment. Clopidogrel response was assessed with ADP-induced aggregations, due to its mechanism of action as an inhibitor of ADP-induced activation. When patients received only a loading dose of clopidogrel prior to PCI, 40% did not gain measurable inhibition of their ADP-induced platelet activity (inhibition of 10% or less). Prolongation of treatment so that all patients had reached a plateau of inhibition exerted by clopidogrel, decreased the incidence of non-responders to 20%. Polymorphisms of COX-1 and GP VI, as well as diabetes and female gender, were associated with decreased in vitro aspirin efficacy. Diabetes also impaired the in vitro efficacy of short-term clopidogrel. Decreased response to clopidogrel was associated with limited inhibition by ARMX, an antagonist of P2Y12-receptor, suggesting the reason for clopidogrel resistance to be receptor-dependent. Conclusions: Considerable numbers of CAD patients were non-responders either to aspirin, clopidogrel or both. In the future, platelet function tests may be helpful to individually select effective and safe antiplatelet medication for these patients.
Resumo:
This study aims to further research in the field of video games by examining flow during individual and co-operative gameplay. Using a puzzle game called Droppit, we examined differences in flow based on two modes of play: single player vs. co-operative gameplay. Co-operative gameplay was found to induce greater flow in participants than single player gameplay. Additionally, co-operative gameplay participants had increased feelings of Challenge-Skill Balance, Unambiguous Feedback, Transformation of Time and Autotelic Experience. Our findings suggest that co-operative gameplay, involving puzzle-based problems, may result in increased flow during video game play.
Resumo:
We compared student performance on large-scale take-home assignments and small-scale invigilated tests that require competency with exactly the same programming concepts. The purpose of the tests, which were carried out soon after the take home assignments were submitted, was to validate the students' assignments as individual work. We found widespread discrepancies between the marks achieved by students between the two types of tasks. Many students were able to achieve a much higher grade on the take-home assignments than the invigilated tests. We conclude that these paired assessments are an effective way to quickly identify students who are still struggling with programming concepts that we might otherwise assume they understand, given their ability to complete similar, yet more complicated, tasks in their own time. We classify these students as not yet being at the neo-Piagetian stage of concrete operational reasoning.
Resumo:
Exercise that targets ankle joint mobility may lead to improvement in calf muscle pump function and subsequent healing. The objectives of this research were to assess the impact of an exercise intervention in addition to routine evidence-based care on the healing rates, functional ability and health-related quality of life for adults with venous leg ulcers (VLUs). This study included 63 patients with VLUs. Patients were randomised to receive either a 12-week exercise intervention with a telephone coaching component or usual care plus telephone calls at the same timepoints. The primary outcome evaluated the effectiveness of the intervention in relation to wound healing. The secondary outcomes evaluated physical activity, functional ability and health-related quality of life measures between groups at the end of the 12 weeks. A per protocol analysis complemented the effectiveness (intention-to-treat) analysis to highlight the importance of adherence to an exercise intervention. Intention-to-treat analyses for the primary outcome showed 77% of those in the intervention group healed by 12 weeks compared to 53% of those in the usual care group. Although this difference was not statistically significant due to a smaller than expected sample size, a 24% difference in healing rates could be considered clinically significant. The per protocol analysis for wound healing, however, showed that those in the intervention group who adhered to the exercise protocol 75% or more of the time were significantly more likely to heal and showed higher rates for wound healing than the control group (P = 0·01), that is, 95% of those who adhered in the intervention group healed in 12 weeks. The secondary outcomes of physical activity, functional ability and health-related quality of life were not significantly altered by the intervention. Among the secondary outcomes (physical activity, functional ability and health-related quality of life), intention-to-treat analyses did not support the effectiveness of the intervention. However, per protocol analyses revealed encouraging results with those participants who adhered more than 75% of the time (n = 19) showing significantly improved Range of Ankle Motion from the self-management exercise programme (P = 0·045). This study has shown that those participants who adhere to the exercise programme as an adjunctive treatment to standard care are more likely to heal and have better functional outcomes than those who do not adhere to the exercises in conjunction with usual care.