964 resultados para Fungi enzymes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Actinocephalus comprises 25 species and is restricted to Brazil, occurring mainly in the Espinhaco Mountains of Minas Gerais and Bahia States. Previous anatomical studies have reported the occurrence of intracellular papillae in the Actinocephalus roots, without dealing with their ultrastructure and function. The purpose of this paper is to investigate the structure, the composition and the probable function of the intracellular papillae of Actinocephalus roots, based on light microscopy, transmission electron microscopy and histochemical tests. The intracellular papillae occurred in all root tissues, from the rhizodermis to the vascular cylinder; they presented different forms and sizes and, ultrastructurally, they corresponded to material deposited between the cell wall and the plasma membrane. The histochemical tests carried out were positive for cellulose, pectin and callose. The intracellular papillae are responses of the plant cells to the interaction with fungi. They work as a physical barrier restricting fungal penetration, and they may also favor the supply of water and nutrients to the plant, since they increase root absorption surface. This might explain why the species of Actinocephalus are among the tallest Eriocaulaceae despite their reduced radicular system and the nutritional deficiency of the soil in which they grow. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to investigate xylanase production by filamentous fungi (Trichoderma viride) to determine the best cultivation conditions in the process, aiming toward optimization of enzyme production. The best temperature, as well as the best carbon source, for biomass production was determined through an automated turbidimetric method (Bioscreen-C). The enzyme activity of this fungus was separately evaluated in two solid substrates (wheat and soybean bran) and in Vogel medium, pure and by adding other carbon sources. Temperature effects, cultivation time, and spore concentrations were also tested. The best temperature and carbon source for enzyme and biomass production was 25 C and sorbitol, respectively. Maximum xylanase activity was achieved when the fungus was cultivated in wheat bran along with sorbitol (1%, w/v), using a spore concentration of 2 x 10(6) spores. mL(-1), pH 5.0, for 144 h cultivation. The study demonstrated not only the importance of the nature of the substrate in obtaining a system resistant to catabolic repression, but also the importance of the culture conditions for biosynthesis of this enzyme. T. viride showed a high potential for xylanase production under the conditions presented in these assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi - Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 - using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) remains the leading cause of mortality due to a single bacterial pathogen, Mycobacterium tuberculosis. The reemergence of TB as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, the proliferation of multi-drug-resistant strains (MDR-TB) and, more recently, of extensively drug resistant isolates (XDR-TB) have created a need for the development of new antimycobacterial agents. Amongst the several proteins and/or enzymes to be studied as potential targets to develop novel drugs against M. tuberculosis, the enzymes of the shikimate pathway are attractive targets because they are essential in algae, higher plants, bacteria, and fungi, but absent from mammals. The mycobacterial shikimate pathway leads to the biosynthesis of chorismate, which is a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Here we report the structural studies by homology modeling and circular dichroism spectroscopy of the shikimate dehydrogenase from M. tuberculosis (MtSDH), which catalyses the fourth step of the shikimate pathway. Our structural models show that the MtSDH has similar structure to other shikimate dehydrogenase structures previously reported either in presence or absence of NADP, despite the low amino acid sequence identity. The circular dichroism spectra corroborate the secondary structure content observed in the MtSDH models developed. The enzyme was stable up to 50 degrees C presenting a cooperative unfolding profile with the midpoint of the unfolding temperature value of similar to 63-64 degrees C, as observed in the unfolding experiment followed by circular dichroism. Our MtSDH structural models and circular dichroism data showed small conformational changes induced by NADP binding. We hope that the data presented here will assist the rational design of antitubercular agents.