999 resultados para Caro Maza de Lizana, Josep
Tyrophagus putrescentiae predando insetos adultos de Aedes aegypti e Aedes albopictus em laboratório
Resumo:
O objetivo do estudo foi identificar ácaro infestando colônia de Aedes aegypti e Ae. albopictus, além da investigação de fonte de contaminação. A espécie de ácaro foi identificada pela montagem, em meio de Hoyer, entre lâmina e lamínula e observados em microscopia óptica, revelando tratar-se de Tyrophagus putrescentiae. Amostras de ração para peixe e de ração para coelho foram mantidas em estufa BOD a 27°C e 90% de umidade, por 21 dias, sendo examinadas semanalmente. A presença de T. putrescentiae foi somente observada em amostras de ração para coelho. Presume-se que T. putrescentiae tenha sido introduzido nas colônias pela forésia em cobaias guinea-pigs, encontrando em ambiente de insetário na ocasião do evento (28,7°C, 72% de umidade e fotoperíodo de 14L:10E horas) condições favoráveis para o seu desenvolvimento.
Resumo:
Una de las potencialidades del arte es devenir una herramienta para enfocar determinados conflictos desde nuevos ángulos y articular preguntas que impacten en la comunidad. Aquí el arte se funde con la filosofía, la sociología, la antropología, con el activismo, y con la propia vida. A partir de tales parámetros, se esbozarán diversas propuestas artísticas que ilustran cómo distintos creadores abordan –desde distintos ángulos– el fenómeno de la migración Dentro de la amplia miríada de perspectivas desde las que se puede tratar la migración es interesante resaltar el trabajo de varios artistas que se transforman en altavoces de las experiencias de otras personas, tal y como ejemplifican los proyectos de Pep Dardanyà, Marisa González, He Chengyue y Josep María Martín. Desde un ángulo radicalmente distinto, Santiago Sierra y el colectivo Yes lab reproducen y llevan al límite las mismas dinámicas de explotación que critican, y para finalizar, bajo el prisma de la experiencia vivida, la artista Fiona Tan explora su propio proceso migratorio e investiga la construcción de la identidad.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
O desenvolvimento de sistemas de localização pedestre com recurso a técnicas de dead reckoning tem mostrado ser uma área em expansão no mundo académico e não só. Existem algumas soluções criadas, no entanto, nem todas as soluções serão facilmente implementadas no mercado, quer seja pelo hardware caro, ou pelo sistema em si, que é desenvolvido tendo em conta um cenário em particular. INPERLYS é um sistema que visa apresentar uma solução de localização pedestre, independentemente do cenário, utilizando recursos que poderão ser facilmente usados. Trata-se de um sistema que utiliza uma técnica de dead reckonig para dar a localização do utilizador. Em cenários outdoor, um receptor GPS fornece a posição do utilizador, fornecendo uma posição absoluta ao sistema. Quando não é possível utilizar o GPS, recorre-se a um sensor MEMS e a uma bússola para se obter posições relativas à última posição válida do GPS. Para interligar todos os sensores foi utilizado o protocolo de comunicações sem fios ZigBee™. A escolha recaiu neste protocolo devido a factores como os seus baixos consumos e o seu baixo custo. Assim o sistema torna-se de uso fácil e confortável para o utilizador, ao contrário de sistemas similares desenvolvidos, que utilizam cabos para interligarem os diferentes componentes do sistema. O sensor MEMS do tipo acelerómetro tem a função de ler a aceleração horizontal, ao nível do pé. Esta aceleração será usada por um algoritmo de reconhecimento do padrão das acelerações para se detectar os passos dados. Após a detecção do passo, a aceleração máxima registada nesse passo é fornecida ao coordenador, para se obter o deslocamento efectuado. Foram efectuados alguns testes para se perceber a eficiência do INPERLYS. Os testes decorreram num percurso plano, efectuados a uma velocidade normal e com passadas normais. Verificou-se que, neste momento, o desempenho do sistema poderá ser melhorado, quer seja a nível de gestão das comunicações, quer a nível do reconhecimento do padrão da aceleração horizontal, essencial para se detectar os passos. No entanto o sistema é capaz de fornecer a posição através do GPS, quando é possível a sua utilização, e é capaz de fornecer a orientação do movimento.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade nova de Lisboa para obtenção do grau de Mestre em Tecnologia e Segurança Alimentar área de especialização Segurança Alimentar
Resumo:
ABSTRACT OBJECTIVE To analyze the relations between the meanings of working and the levels of doctors work well-being in the context of their working conditions. METHOD The research combined the qualitative methodology of textual analysis and the quantitative one of correspondence factor analysis. A convenience, intentional, and stratified sample composed of 305 Spanish and Latin American doctors completed an extensive questionnaire on the topics of the research. RESULTS The general meaning of working for the group located in the quartile of malaise included perceptions of discomfort, frustration, and exhaustion. However, those showing higher levels of well-being, located on the opposite quartile, associated their working experience with good conditions and the development of their professional and personal competences. CONCLUSIONS The study provides empirical evidence of the relationship between contextual factors and the meanings of working for participants with higher levels of malaise, and of the importance granted both to intrinsic and extrinsic factors by those who scored highest on well-being.
Resumo:
O VI par craniano, é responsável pela inervação do músculo recto externo. Uma lesão que afecta o VI par irá resultar numa limitação da abdução. A Síndrome de Duane, do tipo I, caracteriza-se por limitação da abdução unilateral, em que o olho afectado não passa da linha média, por retração do globo ocular e estreitamento da fenda palpebral, em adução. O diagnóstico diferencial é de extrema importância para se proceder a um prognóstico correcto e respectivo plano terapêutico. Objectivos: Esquematizar as diversas características motoras e sensoriais da paralisia do VI par craniano comparando-as com as da Síndrome de Duane Tipo I, designando os testes de ortóptica respectivos. Identificar os testes de diagnóstico diferencial entre as duas entidades e as suas características principais, nomeadamente os exames coordimétricos e o teste das ducções forçadas.
Resumo:
Dissertação apresentada na Faculdade de Ciências Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Engenharia Civil – Reabilitação de Edifícios
Resumo:
A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.
Resumo:
The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.
Resumo:
Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.
Resumo:
Se compara la técnica de Aglutinación Directa (AD) utilizando muestras de sangre total desecada en papel de filtro, con la técnica de ELISA y la misma AD utilizando muestras de suero de los mismos pacientes, para la detección de anticuerpos antitoxoplasma. Los resultados muestran la validez del método de la sangre desecada en papel de filtro para la detección de anticuerpos antitoxoplasma con la técnica de AD, y se considera su utilidad en los estudios epidemiológicos de campo.