913 resultados para CSA (Country Specific Advantages)
Resumo:
The concentrations of Na, K, Ca, Mg, Ba, Sr, Fe, Al, Mn, Zn, Pb, Cu, Ni, Cr, Co, Se, U and Ti were determined in the osteoderms and/or flesh of estuarine crocodiles (Crocodylus porosus) captured in three adjacent catchments within the Alligator Rivers Region (ARR) of northern Australia. Results from multivariate analysis of variance showed that when all metals were considered simultaneously, catchment effects were significant (P≤0.05). Despite considerable within-catchment variability, linear discriminant analysis (LDA) showed that differences in elemental signatures in the osteoderms and/or flesh of C. porosus amongst the catchments were sufficient to classify individuals accurately to their catchment of occurrence. Using cross-validation, the accuracy of classifying a crocodile to its catchment of occurrence was 76% for osteoderms and 60% for flesh. These data suggest that osteoderms provide better predictive accuracy than flesh for discriminating crocodiles amongst catchments. There was no advantage in combining the osteoderm and flesh results to increase the accuracy of classification (i.e. 67%). Based on the discriminant function coefficients for the osteoderm data, Ca, Co, Mg and U were the most important elements for discriminating amongst the three catchments. For flesh data, Ca, K, Mg, Na, Ni and Pb were the most important metals for discriminating amongst the catchments. Reasons for differences in the elemental signatures of crocodiles between catchments are generally not interpretable, due to limited data on surface water and sediment chemistry of the catchments or chemical composition of dietary items of C. porosus. From a wildlife management perspective, the provenance or source catchment(s) of 'problem' crocodiles captured at settlements or recreational areas along the ARR coastline may be established using catchment-specific elemental signatures. If the incidence of problem crocodiles can be reduced in settled or recreational areas by effective management at their source, then public safety concerns about these predators may be moderated, as well as the cost of their capture and removal. Copyright © 2002 Elsevier Science B.V.
Resumo:
There is a wide variety of drivers for business process modelling initiatives, reaching from business evolution and process optimisation over compliance checking and process certification to process enactment. That, in turn, results in models that differ in content due to serving different purposes. In particular, processes are modelled on different abstraction levels and assume different perspectives. Vertical alignment of process models aims at handling these deviations. While the advantages of such an alignment for inter-model analysis and change propagation are out of question, a number of challenges has still to be addressed. In this paper, we discuss three main challenges for vertical alignment in detail. Against this background, the potential application of techniques from the field of process integration is critically assessed. Based thereon, we identify specific research questions that guide the design of a framework for model alignment.
Resumo:
We report a new tuneable alternating current (ac) electrohydrodynamics (ac-EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac-EHD field strength. The ability to manipulate ac-EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over onspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof-of-concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90%; %RSD=2, n=3) with a 10-fold reduction in nonspecific dsorption of non-target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac-EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications.
Resumo:
Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. © 2013 Macmillan Publishers Limited.
Resumo:
Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g−1 at a scan rate of 10 mV s−1 and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.
Resumo:
Stem cells (SC) are among the most promising cell sources for tissue engineering due to their ability to self-renew and differentiate, properties that underpin their clinical application in tissue regeneration. As such, control of SC fate is one of the most crucial issues that needs to be fully understood to realise their tremendous potential in regenerative biology. The use of functionalized nanostructured materials (NM) to control the microscale regulation of SC has offered a number of new features and opportunities for regulating SC. However, fabricating and modifying such NM to induce specific SC response still represent a significant scientific and technological challenge. Due to their versatility, plasmas are particularly attractive for the manufacturing and modification of tailored nanostructured surfaces for stem cell control. In this review, we briefly describe the biological role of SC and the mechanisms by which they are controlled and then highlight the benefits of using a range of nanomaterials to control the fate of SC. We then discuss how plasma nanoscience research can help produce/functionalise these NMs for more effective and specific interaction with SCs. The review concludes with a perspective on the advantages and challenges of research at the intersection between plasma physics, materials science, nanoscience, and SC biology.
Resumo:
The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.
Resumo:
The ionization energy theory is used to calculate the evolution of the resistivity and specific heat curves with respect to different doping elements in the recently discovered superconducting pnictide materials. Electron-conduction mechanism in the pnictides above the structural transition temperature is explained unambiguously, which is also consistent with other strongly correlated materials, such as cuprates, manganites, titanates and magnetic semiconductors.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. We have developed novel patient specific modelling software to create individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We are using these models to better understand the biomechanics of spinal deformity correction.
Resumo:
The Queensland Centre for Social Science Innovation was formed in 2012 to develop collaborations among the Queensland Government and five Queensland universities—The University of Queensland, Griffith University, Queensland University of Technology, James Cook University and Central Queensland University. Three priorities for initial projects were established by the Queensland Government with response by the participating universities. This project addressed the identified priority area: factors affecting educational achievement and investigation of the link between school design, refurbishment and educational outcomes. The proposal for this project indicated that a Review of research literature would be undertaken that linked school and classroom design with educational outcomes for learners in the 21st century. Further, research would be examined for impact of technology on staff and students, as well as learning spaces that addressed the diversity of student learners. Specific investigation of research on effective design to enhance learning outcomes for Aboriginal and Torres Strait Islander students was to be undertaken. The project therefore consists of a Review of research literature to provide an evidence base on the impact of school and classroom on educational outcomes. The original proposal indicated that indicators of successful school and classroom design would be student learning outcomes on a range of variables, with input, the specific architectural design elements. The review was undertaken during the period July 2012 to June 2013. A search was undertaken of journals, databases, and websources to identify relevant material. These were examined for evidence-based statements and design of learning spaces to enhance learning. The Review is comprehensive, and representative of issues raised in research, and conceptualisations and debates informing modern educational design. Initial findings indicated two key findings central to reading this Review. The first key finding is that the predominant focus of modern design of learning space is on process and the engagement of stakeholders. Schools are social institutions and development of a school as a learning space to suit 21st century learning needs necessarily involves the staff, students and other members of the community as key participants. The concept of social aspects of design is threaded throughout the Review. The second key finding is that little research explicitly examined the relationship between the design of learning spaces and educational outcomes. While some research does exist, the most explicitly-focused research uses narrow test-based achievement as the learning outcomes. These are not sympathetic to the overall framings of the research on 21st century learning, future schooling and the needs of the new generation of learners and society.
Resumo:
The social media statistics of South Africa reveal an exponential increase in the use of social media. Libraries, as part of a community, cannot ignore this! Social media provide libraries instant and direct connection with their members regardless their geographical location. This paper explores social media use in libraries. The establishment of social media for the SABC Media Libraries is discussed to demonstrate a practical implementation of social media in libraries and archives. Tips and resources, with specific mention to Twitter and Facebook, as well as social media etiquette and social media policy guidelines are supplied. The literature of published articles and Infographic show the changing role of librarians in the social media era and the need for librarians to keep learning and update their skills to accommodate users’ needs. The focus should now be on how well we do social media for the library, not on whether we should do it or not!
Resumo:
In 2012, the only South East Asian countries that have ratified the 1951 Convention relating to the Status of Refugees and the 1967 Protocol Relating to the Status of Refugees (hereafter referred to as the 1951 Convention and 1967 Protocol) is Philippines (signed 1954), Cambodia (signed 1995) and Timor Leste (signed 2001). Countries such as Indonesia, Malaysia and Thailand have annual asylum seeking populations from Myanmar, South Asia and Middle East, that are estimated to be at 15 000-20 000 per country (UNHCR 2012). The lack of a permanent and formal asylum processing process in these countries means that that asylum-seeking populations in the region are reliant on the local offices of the United Nations High Commission for Refugees based in the region to process their claims. These offices rely upon the good will of these governments to have a presence near detection camps and in capital cities to process claims of those who manage to reach the UNHCR representative office. The only burden sharing mechanism within the region primarily exists under the Bali Process on People Smuggling, Trafficking in Persons and Related Transnational Crime (the Bali Process), introduced in 2002. The Bali Process refers to an informal cooperative agreement amongst the states from the Asia-Pacific region, with Australia and Indonesia as the co-chairs, which discusses its namesake: primarily anti-people smuggling activities and migration protocols. There is no provision within this process to discuss the development of national asylum seeking legislation, processes for domestic processing of asylum claims or burden sharing in contrast to other regions such as Africa and South America (i.e. 2009 African Union Convention for the Protection and Assistance of the Internally Displaced, 1969 African Union Convention Governing the Specific Aspects of Refugee Problems in Africa and 1984 Cartagena Declaration on Refugees [Americas]) (PEF 2010: 19).
Resumo:
The case is noteworthy for its consideration of the relevance of circumstances arising after formation of the contract of sale in a summary judgment context...
Resumo:
MicroRNAs are small non-coding RNAs that mediate post-transcriptional gene silencing. Fear-extinction learning in C57/Bl6J mice led to increased expression of the brain-specific microRNA miR-128b, which disrupted stability of several plasticity-related target genes and regulated formation of fear-extinction memory. Increased miR-128b activity may therefore facilitate the transition from retrieval of the original fear memory toward the formation of a new fear-extinction memory.