873 resultados para CARDIAC LOADING
Resumo:
Isolated ventricular non-compaction (IVNC) is a rare, congenital, unclassified cardiomyopathy characterized by prominent trabecular meshwork and deep recesses. Major clinical manifestations of IVNC are heart failure, atrial and ventricular arrhythmias, and thrombo-embolic events. We describe a case of a 69-year-old woman in whom the diagnosis of IVNC was discovered late, whereas former echocardiographic examinations were considered normal. She was known for systolic left ventricular dysfunction for 3 years and then became symptomatic (NYHA III). In the past, she suffered from multiple episodes of deep vein thrombosis and pulmonary embolism. Electrocardiogram revealed a wide QRS complex, and transthoracic echocardiography showed typical apical thickening of the left and right ventricular myocardial wall with two distinct layers. The ratio of non-compacted to compacted myocardium was >2:1. Cardiac MRI confirmed the echocardiographic images. Cerebral MRI revealed multiple ischaemic sequellae. In view of the persistent refractory, heart failure in medical treatment of patients with classical criteria for cardiac re-synchronization therapy, as well as the ventricular arrhythmias, a biventricular automatic intracardiac defibrillator (biventricular ICD) was implanted. The 2-year follow-up period was characterized by improvement of NYHA functional class from III to I and increasing in left ventricular function. We hereby present a case of IVNC with favourable outcome after biventricular ICD implantation. Cardiac re-synchronization therapy could be considered in the management of this pathology.
Resumo:
BACKGROUND: Electrophysiological cardiac devices are increasingly used. The frequency of subclinical infection is unknown. We investigated all explanted devices using sonication, a method for detection of microbial biofilms on foreign bodies. METHODS AND RESULTS: Consecutive patients in whom cardiac pacemakers and implantable cardioverter/defibrillators were removed at our institution between October 2007 and December 2008 were prospectively included. Devices (generator and/or leads) were aseptically removed and sonicated, and the resulting sonication fluid was cultured. In parallel, conventional swabs of the generator pouch were performed. A total of 121 removed devices (68 pacemakers, 53 implantable cardioverter/defibrillators) were included. The reasons for removal were insufficient battery charge (n=102), device upgrading (n=9), device dysfunction (n=4), or infection (n=6). In 115 episodes (95%) without clinical evidence of infection, 44 (38%) grew bacteria in sonication fluid, including Propionibacterium acnes (n=27), coagulase-negative staphylococci (n=11), Gram-positive anaerobe cocci (n=3), Gram-positive anaerobe rods (n=1), Gram-negative rods (n=1), and mixed bacteria (n=1). In 21 of 44 sonication-positive episodes, bacterial counts were significant (>or=10 colony-forming units/mL of sonication fluid). In 26 sterilized controls, sonication cultures remained negative in 25 cases (96%). In 112 cases without clinical infection, conventional swab cultures were performed: 30 cultures (27%) were positive, and 18 (60%) were concordant with sonication fluid cultures. Six devices and leads were removed because of infection, growing Staphylococcus aureus, Streptococcus mitis, and coagulase-negative staphylococci in 6 sonication fluid cultures and 4 conventional swab cultures. CONCLUSIONS: Bacteria can colonize cardiac electrophysiological devices without clinical signs of infection.
Resumo:
Aims Perfusion-cardiac magnetic resonance (CMR) has emerged as a potential alternative to single-photon emission computed tomography (SPECT) to assess myocardial ischaemia non-invasively. The goal was to compare the diagnostic performance of perfusion-CMR and SPECT for the detection of coronary artery disease (CAD) using conventional X-ray coronary angiography (CXA) as the reference standard. Methods and results In this multivendor trial, 533 patients, eligible for CXA or SPECT, were enrolled in 33 centres (USA and Europe) with 515 patients receiving MR contrast medium. Single-photon emission computed tomography and CXA were performed within 4 weeks before or after CMR in all patients. The prevalence of CAD in the sample was 49%. Drop-out rates for CMR and SPECT were 5.6 and 3.7%, respectively (P = 0.21). The primary endpoint was non-inferiority of CMR vs. SPECT for both sensitivity and specificity for the detection of CAD. Readers were blinded vs. clinical data, CXA, and imaging results. As a secondary endpoint, the safety profile of the CMR examination was evaluated. For CMR and SPECT, the sensitivity scores were 0.67 and 0.59, respectively, with the lower confidence level for the difference of +0.02, indicating superiority of CMR over SPECT. The specificity scores for CMR and SPECT were 0.61 and 0.72, respectively (lower confidence level for the difference: -0.17), indicating inferiority of CMR vs. SPECT. No severe adverse events occurred in the 515 patients. Conclusion In this large multicentre, multivendor study, the sensitivity of perfusion-CMR to detect CAD was superior to SPECT, while its specificity was inferior to SPECT. Cardiac magnetic resonance is a safe alternative to SPECT to detect perfusion deficits in CAD.
Resumo:
INTRODUCTION: Continuous EEG (cEEG) is increasingly used to monitor brain function in neuro-ICU patients. However, its value in patients with coma after cardiac arrest (CA), particularly in the setting of therapeutic hypothermia (TH), is only beginning to be elucidated. The aim of this study was to examine whether cEEG performed during TH may predict outcome. METHODS: From April 2009 to April 2010, we prospectively studied 34 consecutive comatose patients treated with TH after CA who were monitored with cEEG, initiated during hypothermia and maintained after rewarming. EEG background reactivity to painful stimulation was tested. We analyzed the association between cEEG findings and neurologic outcome, assessed at 2 months with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). RESULTS: Continuous EEG recording was started 12 ± 6 hours after CA and lasted 30 ± 11 hours. Nonreactive cEEG background (12 of 15 (75%) among nonsurvivors versus none of 19 (0) survivors; P < 0.001) and prolonged discontinuous "burst-suppression" activity (11 of 15 (73%) versus none of 19; P < 0.001) were significantly associated with mortality. EEG seizures with absent background reactivity also differed significantly (seven of 15 (47%) versus none of 12 (0); P = 0.001). In patients with nonreactive background or seizures/epileptiform discharges on cEEG, no improvement was seen after TH. Nonreactive cEEG background during TH had a positive predictive value of 100% (95% confidence interval (CI), 74 to 100%) and a false-positive rate of 0 (95% CI, 0 to 18%) for mortality. All survivors had cEEG background reactivity, and the majority of them (14 (74%) of 19) had a favorable outcome (CPC 1 or 2). CONCLUSIONS: Continuous EEG monitoring showing a nonreactive or discontinuous background during TH is strongly associated with unfavorable outcome in patients with coma after CA. These data warrant larger studies to confirm the value of continuous EEG monitoring in predicting prognosis after CA and TH.
Resumo:
PURPOSE: The combination of embolic beads with a multitargeted tyrosine kinase inhibitor that inhibits tumor vessel growth is suggested as an alternative and improvement to the current standard doxorubicin-eluting beads for use in transarterial chemoembolization. This study demonstrates the in vitro loading and release kinetics of sunitinib using commercially available embolization microspheres and evaluates the in vitro biologic efficacy on cell cultures and the resulting in vivo pharmacokinetics profiles in an animal model. MATERIALS AND METHODS: DC Bead microspheres, 70-150 µm and 100-300 µm (Biocompatibles Ltd., Farnham, United Kingdom), were loaded by immersion in sunitinib solution. Drug release was measured in saline in a USP-approved flow-through apparatus and quantified by spectrophotometry. Activity after release was confirmed in cell culture. For pharmacokinetics and in vivo toxicity evaluation, New Zealand white rabbits received sunitinib either by intraarterial injection of 100-300 µm sized beads or per os. Plasma and liver tissue drug concentrations were assessed by liquid chromatography-tandem mass spectroscopy. RESULTS: Sunitinib loading on beads was close to complete and homogeneous. A total release of 80% in saline was measured, with similar fast-release profiles for both sphere sizes. After embolization, drug plasma levels remained below the therapeutic threshold (< 50 ng/mL), but high concentrations at 6 hours (14.9 µg/g) and 24 hours (3.4 µg/g) were found in the liver tissue. CONCLUSIONS: DC Bead microspheres of two sizes were efficiently loaded with sunitinib and displayed a fast and almost complete release in saline. High liver drug concentrations and low systemic levels indicated the potential of sunitinib-eluting beads for use in embolization.
Resumo:
Elevated resting heart rate is associated with greater risk of cardiovascular disease and mortality. In a 2-stage meta-analysis of genome-wide association studies in up to 181,171 individuals, we identified 14 new loci associated with heart rate and confirmed associations with all 7 previously established loci. Experimental downregulation of gene expression in Drosophila melanogaster and Danio rerio identified 20 genes at 11 loci that are relevant for heart rate regulation and highlight a role for genes involved in signal transmission, embryonic cardiac development and the pathophysiology of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate with risk of atrial fibrillation. Our findings provide fresh insights into the mechanisms regulating heart rate and identify new therapeutic targets.
Resumo:
Objectif Un bolus unique d'étomidate inhibe une enzyme mitochondriale impliquée dans la synthèse du cortisol. Au sein de notre institution, tout patient candidat à une chirurgie cardiaque reçoit de l'étomidate à l'induction de l'anesthésie. L'objectif de cette étude a été de déterminer l'incidence des dysfonctions surrénaliennes chez les patients bénéficiant d'une chirurgie cardiaque et nécessitant de hautes doses de noradrénaline au cours de la période postopératoire. Type d'étude Étude rétrospective descriptive dans l'unité de réanimation d'un centre hospitalier universitaire. Patients et méthodes Soixante-trois patients admis en réanimation après chirurgie cardiaque nécessitant plus de 0,2μg/kg par minute de noradrénaline au cours des premières 48 heures postopératoires ont été étudiés. L'insuffisance surrénalienne absolue a été définie par un cortisol basal inférieur à 414nmo/l (15μg/dl), l'insuffisance surrénalienne relative par un cortisol basal entre 414nmo/l (15μg/dl) et 938nmo/l (34μg/dl) avec une augmentation de la cortisolémie (à 60 minutes après un test de stimulation par 250μg de corticotropine de synthèse) inférieure à 250nmo/l (9μg/dl). Résultats Quatorze patients (22 %) ont présenté une fonction surrénalienne normale, 10 (16 %) une insuffisance surrénalienne absolue et 39 (62 %) une insuffisance surrénalienne relative. Tous les patients ont reçu une substitution stéroïdienne, sans aucune différence d'évolution clinique entre les différents groupes. Conclusion L'incidence de l'insuffisance surrénalienne chez les patients qui ont reçu un bolus d'étomidate à l'induction, lors d'une chirurgie cardiaque avec circulation extracorporelle, et présenté une défaillance circulatoire postopératoire, est élevée.
Resumo:
Background: TIDratio indirectly reflects myocardial ischemia and is correlated with cardiacprognosis. We aimed at comparing the influence of three different softwarepackages for the assessment of TID using Rb-82 cardiac PET/CT. Methods: Intotal, data of 30 patients were used based on normal myocardial perfusion(SSS<3 and SRS<3) and stress myocardial blood flow 2mL/min/g)assessed by Rb-82 cardiac PET/CT. After reconstruction using 2D OSEM (2Iterations, 28 subsets), 3-D filtering (Butterworth, order=10, ωc=0.5), data were automatically processed, and then manually processed fordefining identical basal and apical limits on both stress and rest images.TIDratio were determined with Myometrix®, ECToolbox® and QGS®software packages. Comparisons used ANOVA, Student t-tests and Lin concordancetest (ρc). Results: All of the 90 processings were successfullyperformed. TID ratio were not statistically different between software packageswhen data were processed automatically (P=0.2) or manually (P=0.17). There was a slight, butsignificant relative overestimation of TID with automatic processing incomparison to manual processing using ECToolbox® (1.07 ± 0.13 vs 1.0± 0.13, P=0.001)and Myometrix® (1.07 ± 0.15 vs 1.01 ± 0.11, P=0.003) but not using QGS®(1.02 ±0.12 vs 1.05 ± 0.11, P=0.16). The best concordance was achieved between ECToolbox®and Myometrix® manual (ρc=0.67) processing.Conclusion: Using automatic or manual mode TID estimation was not significantlyinfluenced by software type. Using Myometrix® or ECToolbox®TID was significantly different between automatic and manual processing, butnot using QGS®. Software package should be account for when definingTID normal reference limits, as well as when used in multicenter studies. QGS®software seemed to be the most operator-independent software package, whileECToolbox® and Myometrix® produced the closest results.
Resumo:
In certain cases of sudden death, forensic experts may discover during an investigation or autopsy that family members of the deceased are also at risk of harm-from genetic disease, for instance. But do they have a duty to warn them? Looking at similar duties of physicians and researchers to warn third parties of risk suggests they do.
Resumo:
Cardiac L-type Ca (CaV1.2) channels are composed of a pore forming CaV1.2-α1 subunit and auxiliary β- and α2δ-subunits. β-subunits are important not only for surface expression of the channel pore but also for modulation of channel gating properties. Different β-subunits differentially modulate channel activity (Hullin et al., PLOSone, 2007) and thus L-type Ca2+ channel gating is altered when β-subunit expression pattern is changed. In human heart failure increased activity of single ventricular L-type Ca2+-channels is associated with an increased expression of β2-subunits. Interestingly, induction of β2-subunit over-expression in hearts of transgenic mice resembled this heart failure phenotype of hyperactive single L-type Ca2+-channel channels (Beetz et al., Cardiovasc Res. 2009). We hypothesised that competition of less stimulating β-subunits (e.g. β1) with β-subunits causing strong channel stimulation (e.g. β2) might be a means to treat dysfunctional L-type Ca2+-channel activity. To test this hypothesis, we performed whole-cell and single-channel measurements employing recombinant CaV1.2 channels expressed in HEK293 cells together with both β- and β1a2b-subunits. Whole-cell analysis revealed no differences of maximum L-type Ca2+-current densities [pA/pF] with coexpression of either β1a-subunits (-52±3.8), β2b-subunits (-61.5±6.6) or the mixtures of β- and β1a2b-subunits with the plasmid transfection ratio of 2:1 (-60.2±1.6) and 1:1 (-56.7±2.6) respectively. However, steady state inactivation kinetics differed between particular β-subunit and the relative amount of β-subunit presence in the mixtures (β1a1a-subunit (-41.1±1.0), β2b-subunits (-35.1±1.1), mixture 2:1 (-40.3±1.5), and mixture 1:1 (-38.4±2.0); [mV]; p<0.05, students t-test). Using a novel single-channel analysis, switching of gating between β1-like and β2-like modes was monitored on a minute time-scale when both β-subunits were co-expressed in the same cells, but the larger amount of β1a-subunits is required for the effective switching of gating. Our results indicate a model of mutually exclusive binding and effective competition between several β-subunits suggesting that hyperactive channel gating mediated e.g. by β2-subunits can be normalized by β1-subunits. Therefore, competitive replacement between different L-type Ca2+-channel β-subunits might serve as a novel therapeutic strategy for e.g. heart failure.
Resumo:
This study aimed to determine changes in spring-mass model (SMM) characteristics, plantar pressures, and muscle activity induced by the repetition of sprints in soccer-specific conditions; i.e., on natural grass with soccer shoes. Thirteen soccer players performed 6 × 20 m sprints interspersed with 20 s of passive recovery. Plantar pressure distribution was recorded via an insole pressure recorder device divided into nine areas for analysis. Stride temporal parameters allowed to estimate SMM characteristics. Surface electromyographic activity was monitored for vastus lateralis, rectus femoris, and biceps femoris muscles. Sprint time, contact time, and total stride duration lengthened from the first to the last repetition (+6.7, +12.9, and +9.3%; all P < 0.05), while flight time, swing time, and stride length remained constant. Stride frequency decrease across repetitions approached significance (-6.8%; P = 0.07). No main effect of the sprint number or any significant interaction between sprint number and foot region was found for maximal force, mean force, peak pressure and mean pressure (all P > 0.05). Center of mass vertical displacement increased (P < 0.01) with time, together with unchanged (both P > 0.05) peak vertical force and leg compression. Vertical stiffness decreased (-15.9%; P < 0.05) across trials, whereas leg stiffness changes were not significant (-5.9%; P > 0.05). Changes in root mean square activity of the three tested muscles over sprint repetitions were not significant. Although repeated sprinting on natural grass with players wearing soccer boots impairs their leg-spring behavior (vertical stiffness), there is no substantial concomitant alterations in muscle activation levels or plantar pressure patterns.
Resumo:
Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.
Resumo:
BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.