963 resultados para API (Application Programming Interface)
Resumo:
An algorithm for approximate credal network updating is presented. The problem in its general formulation is a multilinear optimization task, which can be linearized by an appropriate rule for fixing all the local models apart from those of a single variable. This simple idea can be iterated and quickly leads to very accurate inferences. The approach can also be specialized to classification with credal networks based on the maximality criterion. A complexity analysis for both the problem and the algorithm is reported together with numerical experiments, which confirm the good performance of the method. While the inner approximation produced by the algorithm gives rise to a classifier which might return a subset of the optimal class set, preliminary empirical results suggest that the accuracy of the optimal class set is seldom affected by the approximate probabilities
Resumo:
Successful root canal treatment requires management of the bacterial infection within the root canal space and protection of residual tooth structure with direct/indirect restorations. Long-term success depends upon prevention of re-infection of the root canal space as well as ensuring favorable distribution of the occlusal forces throughout the residual tooth structure. Appropriate planning and design of the final restoration prior to initiating root canal treatment is paramount in achieving this objective. This article describes simultaneous restorability assessment and access cavity preparation to optimize outcome of both endodontic and prosthodontic treatment of the endodontically involved tooth.
Resumo:
Markov Decision Processes (MDPs) are extensively used to encode sequences of decisions with probabilistic effects. Markov Decision Processes with Imprecise Probabilities (MDPIPs) encode sequences of decisions whose effects are modeled using sets of probability distributions. In this paper we examine the computation of Γ-maximin policies for MDPIPs using multilinear and integer programming. We discuss the application of our algorithms to “factored” models and to a recent proposal, Markov Decision Processes with Set-valued Transitions (MDPSTs), that unifies the fields of probabilistic and “nondeterministic” planning in artificial intelligence research.
Resumo:
Background: Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. Results: We describe QUADrATiC (http://go.qub.ac.uk/QUADrATiC), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts.Conclusions: QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.
Resumo:
A exigente inovação na área das aplicações biomédicas tem guiado a evolução das tecnologias de informação nas últimas décadas. Os desafios associados a uma gestão, integração, análise e interpretação eficientes dos dados provenientes das mais modernas tecnologias de hardware e software requerem um esforço concertado. Desde hardware para sequenciação de genes a registos electrónicos de paciente, passando por pesquisa de fármacos, a possibilidade de explorar com precisão os dados destes ambientes é vital para a compreensão da saúde humana. Esta tese engloba a discussão e o desenvolvimento de melhores estratégias informáticas para ultrapassar estes desafios, principalmente no contexto da composição de serviços, incluindo técnicas flexíveis de integração de dados, como warehousing ou federação, e técnicas avançadas de interoperabilidade, como serviços web ou LinkedData. A composição de serviços é apresentada como um ideal genérico, direcionado para a integração de dados e para a interoperabilidade de software. Relativamente a esta última, esta investigação debruçou-se sobre o campo da farmacovigilância, no contexto do projeto Europeu EU-ADR. As contribuições para este projeto, um novo standard de interoperabilidade e um motor de execução de workflows, sustentam a sucesso da EU-ADR Web Platform, uma plataforma para realizar estudos avançados de farmacovigilância. No contexto do projeto Europeu GEN2PHEN, esta investigação visou ultrapassar os desafios associados à integração de dados distribuídos e heterogéneos no campo do varíoma humano. Foi criada uma nova solução, WAVe - Web Analyses of the Variome, que fornece uma coleção rica de dados de variação genética através de uma interface Web inovadora e de uma API avançada. O desenvolvimento destas estratégias evidenciou duas oportunidades claras na área de software biomédico: melhorar o processo de implementação de software através do recurso a técnicas de desenvolvimento rápidas e aperfeiçoar a qualidade e disponibilidade dos dados através da adopção do paradigma de web semântica. A plataforma COEUS atravessa as fronteiras de integração e interoperabilidade, fornecendo metodologias para a aquisição e tradução flexíveis de dados, bem como uma camada de serviços interoperáveis para explorar semanticamente os dados agregados. Combinando as técnicas de desenvolvimento rápidas com a riqueza da perspectiva "Semantic Web in a box", a plataforma COEUS é uma aproximação pioneira, permitindo o desenvolvimento da próxima geração de aplicações biomédicas.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
The design phase of B-spline neural networks represents a very high computational task. For this purpose, heuristics have been developed, but have been shown to be dependent on the initial conditions employed. In this paper a new technique, Bacterial Programming, is proposed, whose principles are based on the replication of the microbial evolution phenomenon. The performance of this approach is illustrated and compared with existing alternatives.
Resumo:
Painterly rendering (non-photorealistic rendering or NPR) aims at translating photographs into paintings with discrete brush strokes, simulating certain techniques (im- or expressionism) and media (oil or watercolour). Recently, our research into visual perception and models of processes in the visual cortex resulted in a new rendering scheme, in which detected lines and edges at different scales are translated into brush strokes of different sizes. In order to prepare a version which is suitable for many users, including children, the design of the interface in terms of window and menu system is very important. Discussions with artists and non-artists led to three design criteria: (1) the interface must reflect the procedures and possibilities that real painters follow and use, (2) it must be based on only one window, and (3) the menu system must be very simple, avoiding a jungle of menus and sub-menus. This paper explains the interface that has been developed.
Resumo:
This paper reports on issues at the interface between semantics and lexicography that arose out of the data collection and classification of vocabulary in Anglo-Norman and Middle English in order to create a bilingual thesaurus of everyday life in medieval England. The Bilingual Thesaurus project is based at Birmingham City University and the University of Westminster. Issues to be resolved included the definition of an occupational domain; the creation of a methodology of data collection; the delimitation of domain-specific vocabulary; making distinctions between sense and usage; and the categorisation of the lexical items. Some of these issues are general to thesaurus-making, some are specific to the making of historical thesauruses, while some are unique to the production of a thesaurus of two languages whose use overlapped for several centuries in the late medieval period in England.
Resumo:
The use of perceptual inputs is an emerging area within HCI that suggests a developing Perceptual User Interface (PUI) that may prove advantageous for those involved in mobile serious games and immersive social network environments. Since there are a large variety of input devices, software platforms, possible interactions, and myriad ways to combine all of the above elements in pursuit of a PUI, we propose in this paper a basic experimental framework that will be able to standardize study of the wide range of interactive applications for testing efficacy in learning or information retrieval and also suggest improvements to emerging PUIs by enabling quick iteration. This rapid iteration will start to define a targeted range of interactions that will be intuitive and comfortable as perceptual inputs, and enhance learning and information retention in comparison to traditional GUI systems. The work focuses on the planning of the technical development of two scenarios, and the first steps in developing a framework to evaluate these and other PUIs for efficacy and pedagogy.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores