998 resultados para uranium 238
Resumo:
Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.
Resumo:
A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km**2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux into the deep ocean. Chlorophyll a and primary productivity doubled after fertilization, and photosynthetic quantum yield (FV/FM) increased from 0.33 to >0.40. Silicic acid (<2 µmol/L) limited diatoms, which contributed <10% of phytoplankton biomass. Copepods exerted high grazing pressure. This is the first study of particle flux out of an artificially fertilized bloom with very low diatom biomass. Net community production (NCP) inside the patch, estimated from O2:Ar ratios, averaged 21 mmol POC/m**2/d, probably ±20%. 234Th profiles implied constant export of ~6.3 mmol POC/m**2/d in the patch, similar to unfertilized waters. The difference between NCP and 234Th-derived export partly accumulated in the mixed layer and was partly remineralized between the mixed layer and 100 m. Neutrally buoyant sediment traps at 200 and 450 m inside and outside the patch caught mostly <1.1 mmol POC/m**2/d, predominantly of fecal origin; flux did not increase upon fertilization. Our data thus indicate intense flux attenuation between 100 and 200 m, and probably between the mixed layer and 100 m. We attribute the lack of fertilization-induced export to silicon limitation of diatoms and reprocessing of sinking particles by detritus feeders. Our data are consistent with the view that nitrate-rich but silicate-deficient waters are not poised for enhanced particle export upon iron addition.
Resumo:
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12-1.01 ppb (0.06-0.59) 230Th, 0.51-1.98 ppm (0.43-1.40) 232Th, 0.13-0.80 ppb (0.09-0.49) 234U, and 1.95-13.47 ppm (1.66-8.24) 238U. Both nodules have average growth rates of ~110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The 234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected 234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.
Resumo:
Thorium and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution Th-230(excess) profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06-0.59 ppb (Th-230), 0.43-1.40 ppm (Th-232), 0.09-0.49 ppb (U-234) and 1.66-8.24 ppm (U-238). The uranium activity ratio in the uppermost samples (1-6 mm) and in two further sections in the nodule at 12.5+/-1.0 mm and 27.3-33.5 mm comes close to the present ocean wa ter value of 1.144+/-0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the Th-230(excess) concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant Th-230(excess) concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11-15 and 28-33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable sb supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.
Resumo:
New U-series isotope data for lavas from the East Scotia backarc spreading center span a large range in (230Th/232Th) and (238U/232Th). Most of the backarc lavas have (238U/230Th) < 1, similar to the composition of mid-oceanic-ridge basalts (MORB). Lavas from two segments have (238U/230Th) > 1 and are enriched in fluid-mobile elements, implying a recent addition of a U-rich slab-derived component. The data from one segment suggest an influence from an aqueous fluid from altered MORB, whereas samples from the other slab-influenced segment show addition of a sediment melt. The slab-influenced samples form a distinct trend in the equiline diagram between aqueous fluid and sediment melt that is suggested to be a mixing line rather than an isochron.
Resumo:
The Nares Strait controversy concerns the debate about whether or not a major sinistral transcurrent fault (the Wegener Fault) separates northern Greenland and Canada. To date no firm evidence has been found for the proposed 200 km sinistral offset, and to the contrary, geological correlations, mainly involving Paleozoic rocks across the Nares Strait, suggest that total left-lateral motion is no more than 70 km. The E-W trending Thule (Greenland) and Devon Island (Canada) dyke swarms lie on opposite sides of Baffin Bay and are offset sinistrally about 200 km, suggesting that if their correlation is established a convincing case for the Wegener Fault can be made. Paleomagnetic, geochemical and petrographic data allow, but do not yet establish, the correlation. Paleomagnetic results for Canadian sites (VGP = 6.9°N, 181.8 °E, A95 = 12.7°, N = 5) and Greenland sites (VGP = 11.5 °N, 178.3 °E, A95 = 13.8°, N = 4) are not significantly different at the 95 % confidence level. These levels are too large to resolve whether or not the Thule and Devon Island swarms have been offset. Geochemical data reveal a distinct and identical pattern in incompatible elements, while petrographically, the dykes are indistinguishable. U-Pb geochronological results for a Canadian dyke (720.2 ±2.0 Ma) and a Thule dyke (720.4 ±2.7 Ma) are identical within error and clearly identify the two sets of dykes as being parts of the same magmatic episode.
Resumo:
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.
Resumo:
A simple, reliable, and efficient method has been elaborated for direct determination of isotopic composition of authigenic uranium in siliceous lacustrine sediments. The method is based on studying kinetics of selective extraction of authigenic uranium from sediments by weak solutions of ammonium hydrocarbonate followed by ICP-MS analysis of nuclides. To estimate contamination of authigenic uranium by terrigenous one contents of 232Th and some other clastogenic elements in the extracts were measured simultaneously. Selectivity of extraction of authigenic uranium from the sediments treated with 1% NH4HCO3 solution appeared to be no worse than 99%. The method was applied to analysis of isotopic composition of authigenic uranium at several key horizons of the earlier dated core from the Baikal Lake. Measurements directly show that 234U/238U values in Baikal water varied depending on climate, which contradicts existing hypotheses. Measured 234U/238U ratios in water of the paleo-Baikal match corresponding values reconstructed from isotopic data for total uranium in the sediments on supposition that U/Th ratio is constant in terrigenous fraction of the sediments. Direct experimental determination of total and authigenic nuclides in sediments enhances potentiality of the method for 234U-230Th dating of non-carbonate lacustrine sediments including those from the Baikal Lake within intervals corresponding to periods of glaciation, when sediments were rich in terrigenous components. Portions of terrigenous and authigenic uranium are well separated and we can study variability of sources of terrigenous matter and refine the earlier model for reconstructing climate humidity in the East Siberia.
Resumo:
Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known about the processes that control the flux attenuation within the upper twilight zone. Here, we present results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period. The entire study area, of approximately 8000 km**2, showed similar vertical export fluxes in spite of the heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between production and export. The POC fluxes at 100 m were high, averaging 26 ± 15 mmol C/m**2/d, although the strength of the biological pump was generally low. Only <20% of the daily primary production reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indicated that direct sinking of diatoms likely caused the high POC transfer efficiencies (~60%) observed between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical migration might have also contributed to downward fluxes.
Resumo:
The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.
Resumo:
High-resolution records of the natural radionuclide 230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the 230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of 230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.
Resumo:
Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (epsilon-Nd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and epsilon-Nd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ~25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (>3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.
Resumo:
Reconstructing past detrital flux and provenance in the Southern Ocean provides information about changes in source regions associated with climate variations and transport pathways. We present a Last Glacial Maximum (LGM) to Holocene comparison of 230Th normalised fluxes combined with sediment provenance data (Pb, Nd and Sr isotopes) from a latitudinal core transect in the eastern Atlantic sector of the Southern Ocean (ODP Leg 177 cores). We compare the radiogenic isotopic composition (IC) of detritus in these cores to that of cores proximal to potential source areas. We observe a well-defined latitudinal Holocene gradient in both detrital flux and provenance of sediment. High detrital fluxes in the north are associated with terrigenous material derived from southern Africa, while low detrital fluxes in the south are associated with supply from southern South America, West Antarctica and the South Sandwich Islands. The data suggest that this well-defined Holocene gradient in detrital flux and sediment provenance is controlled by the flow of the Antarctic Circumpolar Current (ACC) and the position of its frontal zones. The LGM is characterised by 2 to 6 times higher than modern detrital fluxes at most ODP Leg 177 sites. The LGM detrital fluxes do not show a latitudinal trend and suggest a greater supply of glaciogenic detritus sourced from southern South America. Glacial Patagonian outwash sediments (< 5 µm fraction) were analysed and compared to the bulk compositions of the marine sediments. The Pb IC of the Patagonian sediments is very similar to the glacial IC of sediments in the Scotia Sea and at ~ 49° S latitude in the eastern Atlantic sector. We propose that the glacial IC of sediments is controlled by increased delivery of Patagonian detritus initially supplied by glaciers and then transported at depth via the ACC.
Resumo:
There is increasing evidence indicating that syndepositional redistribution of sediment on the seafloor by bottom currents is common and can significantly affect sediment mass accumulation rates. Notwithstanding its common incidence, this process (generally referred to as sediment focusing) is often difficult to recognize. If redistribution is near synchronous to deposition, the stratigraphy of the sediment is not disturbed and sediment focusing can easily be overlooked. Ignoring it, however, can lead to serious misinterpretations of sedimentary fluxes, particularly when past changes in export flux from the overlying water are inferred. In many instances, this problem can be resolved, at least for sediments deposited during the late Quaternary, by normalizing to the flux of 230Th scavenged from seawater, which is nearly constant and equivalent to the known rate of production of 230Th from the decay of dissolved 234U. We review the principle, advantages and limitations of this method. Notwithstanding its limitations, it is clear that 230Th normalization does provide a means of achieving more accurate interpretations of sedimentary fluxes and eliminates the risk of serious misinterpretations of sediment mass accumulation rates.