990 resultados para state fragility
Resumo:
The e.m.f. of a concentration cell for SO x (x=2,3)-O2 incorporating Nasicon as the main solid electrolyte has been measured in the temperature range 720 to 1080 K. The cell arrangement can be represented as,$$Pt, O'_2 + SO'_2 + SO'_3 \left| {Na_2 SO_4 \left\| {\left. {Nasicon} \right\|} \right.} \right.\left. {Na_2 SO_4 } \right|SO''_3 + SO''_2 + O''_2 , Pt$$ The Na2SO4 acts both as an auxiliary electrode, converting chemical potentials of SO x and O2 to equivalent sodium potentials, and as an electrolyte. The presence of Na2SO4 provides partial protection of Nasicon from chemical reaction with gas mixtures containing SO x . The open circuit e.m.f. of the cell is in close agreement with values given by the Nernst equation. For certain fixed inlet gas compositions of SO2+O2, the e.m.f. varies non-linearly with temperature. The intrinsic response time of the cell to step changes in gas composition is estimated to vary from sim2.0 ksec at 723K to sim 0.2 ksec at 1077K. The cell functions well for large differences in partial pressures of SO3(pPrimeSO 3/pprimeSO 3ap104) at the electrodes.
Resumo:
The conformational analysis of a protected homodipeptide of 1-aminocyclopentanecarboxylic acid (Acc5) has been carried out. 1H-nmr studies establish a ?-turn conformation for Boc-Acc5-Acc5-NHMe in chloroform and dimethylsulfoxide solutions involving the methylamide NH in an intramolecular hydrogen bond. Supportive evidence for the formation of an intramolecular hydrogen bond is obtained from ir studies. X-ray diffraction studies reveal a type III ?-turn conformation in the solid state stabilized by a 4 ? 1 hydrogen bond between the Boc CO and methylamide NH groups. The ?,? values for both Acc5 residues are close to those expected for an ideal 310-helical conformation (?? ± 60°, ?? ±30°).
Resumo:
The conformations of Boc-l-Phe-(AiB)3-OH (1) and Boc-l-Phe-(Aib)3-OMe (2) which correspond to the amino terminal sequence of the emerimicins and antiamoebins have been studied in solution using 270 MHz 1H n.m.r. In dimethyl sulphoxide solution both peptides show the presence of two strongly solvent shielded Aib NH groups, consistent with a consecutive β-turn conformation, involving the Aib(3) and Aib(4) NH groups in intramolecular 4 → I hydrogen bonds. This folded conformation is maintained for 2 in chloroform solution. Nuclear Overhauser effect studies provide evidence for a Type II Phe-Aib β-turn. An X-ray diffraction study of Boc-(d,l)-Phe-(Aib)3-OH establishes a single type III(III′) β-turn conformation with Aib(2)-Aib(3) as the corner residues. A single intramolecular 4 → I hydrogen bond between Phe(I) CO and Aib(4) NH groups is observed in the crystal. The solution conformation may incorporate a consecutive type II-III′ structure for the Phe(1)-Aib(2)-Aib(3) segment, with the initial type II β-turn being destabilized by intermolecular interactions in the solid state.
Resumo:
We report a precise measurement of the hyperfine interval in the 2P(1/2) state of Li-7. The transition from the ground state (D-1 line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P-1/2 state as A = 46.047(3), which is discrepant from theoretical calculations by > 80 kHz.
Resumo:
The activity of NiO in NiO-MgO rock salt solid solution has been measured at 1300 K by employing a solid-state galvanic cell: Pt,Ni+ NiO||(CaO)ZrO2||Ni + (Nix,Mgl-x)O, Pt. A high-density tube of Zr02-15 mol% CaO has been used as the solid electrolyte for the emf measurements. The activities of the component oxides in the rock salt solid solution exhibit negative deviation from ideality at the temperature of investigation. The solid solution obeys regular solution behavior at 1300 K. The value of the regular solution parameter is found to be -12000 ((l000) J mol-1. The composition dependence of ΔGEx obtained in this study agrees reasonably well with the calorimetric data reported in the literature for NiO-MgO solid solution.
Resumo:
The crystal and molecular structures of the photochromic compounds 2,5-dimethylisophthalaldehyde (I) and 5-isopropyl-2-methylisophthalaldehyde (II) have been determined by single crystal X-ray analyses. The intramolecular gamma-hydrogen abstraction process involved in the photoenolisation of I and II in the solid state has been rationalised in the light of relevant geometrical parameters.
Resumo:
A simple n-state configurational excitation model which takes into account the presence of weakly connected pentamer units in liquid water is proposed. The model has features of both the “continuum” and “mixture” models. Calculations based on this model satisfactorily account for the important, diagnostic thermodynamic properties of water such as the density maximum, fraction of monomers and so on.
Resumo:
Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
The majority of Internet traffic use Transmission Control Protocol (TCP) as the transport level protocol. It provides a reliable ordered byte stream for the applications. However, applications such as live video streaming place an emphasis on timeliness over reliability. Also a smooth sending rate can be desirable over sharp changes in the sending rate. For these applications TCP is not necessarily suitable. Rate control attempts to address the demands of these applications. An important design feature in all rate control mechanisms is TCP friendliness. We should not negatively impact TCP performance since it is still the dominant protocol. Rate Control mechanisms are classified into two different mechanisms: window-based mechanisms and rate-based mechanisms. Window-based mechanisms increase their sending rate after a successful transfer of a window of packets similar to TCP. They typically decrease their sending rate sharply after a packet loss. Rate-based solutions control their sending rate in some other way. A large subset of rate-based solutions are called equation-based solutions. Equation-based solutions have a control equation which provides an allowed sending rate. Typically these rate-based solutions react slower to both packet losses and increases in available bandwidth making their sending rate smoother than that of window-based solutions. This report contains a survey of rate control mechanisms and a discussion of their relative strengths and weaknesses. A section is dedicated to a discussion on the enhancements in wireless environments. Another topic in the report is bandwidth estimation. Bandwidth estimation is divided into capacity estimation and available bandwidth estimation. We describe techniques that enable the calculation of a fair sending rate that can be used to create novel rate control mechanisms.
Resumo:
The problem of non-destructive determination of the state-of-charge of zinc- and magnesium-manganese dioxide dry batteries is examined experimentally from the viewpoint of internal impedance and open-circuit voltage at equilibrium. It is shown that the impedance is mainly charge-transfer controlled at relatively high states-of-charge and progressively changes over to diffusion control as the state-of-charge decreases in the case of zinc-manganese dioxide dry batteries. On the other hand, the impedance is mainly diffusion controlled for undischarged batteries but becomes charge-transfer controlled as soon as there is some discharge in the case of magnesium-manganese dioxide batteries. It is concluded that the determination of state-of-charge is not possible for both types of batteries by the measurement of impedance parameters due to film-induced fluctuations of these parameters. The measurement of open-circuit voltage at equilibrium can be used as a state-of-charge indicator for Zn-MnO2 batteries but not for Mg-MnO2 batteries.
Resumo:
The determination of the state-of-charge of the lead-acid battery has been examined from the viewpoint of internal impedance. It is shown that the impedance is controlled by charge transfer and to a smaller extent by diffusion processes in the frequency range 15–100 Hz. The equivalent series/parallel capacitance as well as the a.c. phase-shift show a parabolic dependence upon the state-of-charge, with a maximum or minimum at 50% charge. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.
Resumo:
The problem of nondestructive determination of the state-of-charge of nickel-cadmium batteries has been examined experimentally as well as theoretically from the viewpoint of internal impedance. It is shown that the modulus of the impedance is mainly controlled by diffusion at all states of charge. Even so, a prediction of the state of charge is possible if the equivalent series/parallel capacitance or the alternating current phase shift is measured at a sufficiently low a.c. test frequency (5–30 Hz) which also avoids inductive effects. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.
Resumo:
In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene