598 resultados para processor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of standard on-chip buses has eased integration and boosted the production of IP functional cores. However, once an IP is bus specific retargeting to a different bus is time-consuming and tedious, and this reduces the reusability of the bus-specific IP. As new bus standards are introduced and different interconnection methods are proposed, this problem increases. Many solutions have been proposed, however these solutions either limit the IP block performance or are restricted to a particular platform. A new concept is presented that can connect IP blocks to a wide variety of interface architectures with low overhead. This is achieved through the use a special interface adaptor logic layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years many real time applications need to handle data streams. We consider the distributed environments in which remote data sources keep on collecting data from real world or from other data sources, and continuously push the data to a central stream processor. In these kinds of environments, significant communication is induced by the transmitting of rapid, high-volume and time-varying data streams. At the same time, the computing overhead at the central processor is also incurred. In this paper, we develop a novel filter approach, called DTFilter approach, for evaluating the windowed distinct queries in such a distributed system. DTFilter approach is based on the searching algorithm using a data structure of two height-balanced trees, and it avoids transmitting duplicate items in data streams, thus lots of network resources are saved. In addition, theoretical analysis of the time spent in performing the search, and of the amount of memory needed is provided. Extensive experiments also show that DTFilter approach owns high performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an asymmetric multi-processor SoC architecture, featuring a master CPU running uClinux, and multiple loosely-coupled slave CPUs running real-time threads assigned by the master CPU. Real-time SoC architectures often demand a compromise between a generic platform for different applications, and application-specific customizations to achieve performance requirements. Our proposed architecture offers a generic platform running a conventional embedded operating system providing a traditional software-oriented development approach, while multiple slave CPUs act as a dedicated independent real-time threads execution unit running in parallel of master CPU to achieve performance requirements. In this paper, the architecture is described, including the application / threading development environment. The performance of the architecture with several standard benchmark routines is also analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the implementation of a TMR (Triple Modular Redundant) microprocessor system on a FPGA. The system exhibits true redundancy in that three instances of the same processor system (both software and hardware) are executed in parallel. The described system uses software to control external peripherals and a voter is used to output correct results. An error indication is asserted whenever two of the three outputs match or all three outputs disagree. The software has been implemented to conform to a particular safety critical coding guideline/standard which is popular in industry. The system was verified by injecting various faults into it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very large spatially-referenced datasets, for example, those derived from satellite-based sensors which sample across the globe or large monitoring networks of individual sensors, are becoming increasingly common and more widely available for use in environmental decision making. In large or dense sensor networks, huge quantities of data can be collected over small time periods. In many applications the generation of maps, or predictions at specific locations, from the data in (near) real-time is crucial. Geostatistical operations such as interpolation are vital in this map-generation process and in emergency situations, the resulting predictions need to be available almost instantly, so that decision makers can make informed decisions and define risk and evacuation zones. It is also helpful when analysing data in less time critical applications, for example when interacting directly with the data for exploratory analysis, that the algorithms are responsive within a reasonable time frame. Performing geostatistical analysis on such large spatial datasets can present a number of problems, particularly in the case where maximum likelihood. Although the storage requirements only scale linearly with the number of observations in the dataset, the computational complexity in terms of memory and speed, scale quadratically and cubically respectively. Most modern commodity hardware has at least 2 processor cores if not more. Other mechanisms for allowing parallel computation such as Grid based systems are also becoming increasingly commonly available. However, currently there seems to be little interest in exploiting this extra processing power within the context of geostatistics. In this paper we review the existing parallel approaches for geostatistics. By recognising that diffeerent natural parallelisms exist and can be exploited depending on whether the dataset is sparsely or densely sampled with respect to the range of variation, we introduce two contrasting novel implementations of parallel algorithms based on approximating the data likelihood extending the methods of Vecchia [1988] and Tresp [2000]. Using parallel maximum likelihood variogram estimation and parallel prediction algorithms we show that computational time can be significantly reduced. We demonstrate this with both sparsely sampled data and densely sampled data on a variety of architectures ranging from the common dual core processor, found in many modern desktop computers, to large multi-node super computers. To highlight the strengths and weaknesses of the diffeerent methods we employ synthetic data sets and go on to show how the methods allow maximum likelihood based inference on the exhaustive Walker Lake data set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is concerned with the development of distributed real-time systems, in which software is used for the control of concurrent physical processes. These distributed control systems are required to periodically coordinate the operation of several autonomous physical processes, with the property of an atomic action. The implementation of this coordination must be fault-tolerant if the integrity of the system is to be maintained in the presence of processor or communication failures. Commit protocols have been widely used to provide this type of atomicity and ensure consistency in distributed computer systems. The objective of this research is the development of a class of robust commit protocols, applicable to the coordination of distributed real-time control systems. Extended forms of the standard two phase commit protocol, that provides fault-tolerant and real-time behaviour, were developed. Petri nets are used for the design of the distributed controllers, and to embed the commit protocol models within these controller designs. This composition of controller and protocol model allows the analysis of the complete system in a unified manner. A common problem for Petri net based techniques is that of state space explosion, a modular approach to both the design and analysis would help cope with this problem. Although extensions to Petri nets that allow module construction exist, generally the modularisation is restricted to the specification, and analysis must be performed on the (flat) detailed net. The Petri net designs for the type of distributed systems considered in this research are both large and complex. The top down, bottom up and hybrid synthesis techniques that are used to model large systems in Petri nets are considered. A hybrid approach to Petri net design for a restricted class of communicating processes is developed. Designs produced using this hybrid approach are modular and allow re-use of verified modules. In order to use this form of modular analysis, it is necessary to project an equivalent but reduced behaviour on the modules used. These projections conceal events local to modules that are not essential for the purpose of analysis. To generate the external behaviour, each firing sequence of the subnet is replaced by an atomic transition internal to the module, and the firing of these transitions transforms the input and output markings of the module. Thus local events are concealed through the projection of the external behaviour of modules. This hybrid design approach preserves properties of interest, such as boundedness and liveness, while the systematic concealment of local events allows the management of state space. The approach presented in this research is particularly suited to distributed systems, as the underlying communication model is used as the basis for the interconnection of modules in the design procedure. This hybrid approach is applied to Petri net based design and analysis of distributed controllers for two industrial applications that incorporate the robust, real-time commit protocols developed. Temporal Petri nets, which combine Petri nets and temporal logic, are used to capture and verify causal and temporal aspects of the designs in a unified manner.