934 resultados para potential energy curve
Resumo:
CULTURE is an Artificial Life simulation that aims to provide primary school children with opportunities to become actively engaged in the high-order thinking processes of problem solving and critical thinking. A preliminary evaluation of CULTURE has found that it offers the freedom for children to take part in process-oriented learning experiences. Through providing children with opportunities to make inferences, validate results, explain discoveries and analyse situations, CULTURE encourages the development of high-order thinking skills. The evaluation found that CULTURE allows users to autonomously explore the important scientific concepts of life and living, and energy and change within a software environment that children find enjoyable and easy to use.
Resumo:
We propose a new method to investigate the thermal properties of QCD with a small quark chemical potential mu. Derivatives of quark and gluonic observables with respect to mu are computed at mu=0 for two flavors of p4 improved staggered fermions with ma=0.1,0.2 on a 16(3)x4 lattice, and used to calculate the leading order Taylor expansion in mu of the location of the pseudocritical point about mu=0. This expansion should be well behaved for the small values of mu(q)/T(c)similar to0.1 relevant for BNL RHIC phenomenology, and predicts a critical curve T-c(mu) in reasonable agreement with estimates obtained using exact reweighting. In addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of munot equal0 on the equation of state, and comment on the complex phase of the fermion determinant in QCD with munot equal0.
Resumo:
A more efficient classifying cyclone (CC) for fine particle classification has been developed in recent years at the JKMRC. The novel CC, known as the JKCC, has modified profiles of the cyclone body, vortex finder, and spigot when compared to conventional hydrocyclones. The novel design increases the centrifugal force inside the cyclone and mitigates the short circuiting flow that exists in all current cyclones. It also decreases the probability of particle contamination in the place near the cyclone spigot. Consequently the cyclone efficiency is improved while the unit maintains a simple structure. An international patent has been granted for this novel cyclone design. In the first development stage-a feasibility study-a 100 mm JKCC was tested and compared with two 100 min commercial units. Very encouraging results were achieved, indicating good potential for the novel design. In the second development stage-a scale-up stage-the JKCC was scaled up to 200 mm in diameter, and its geometry was optimized through numerous tests. The performance of the JKCC was compared with a 150 nun commercial unit and exhibited sharper separation, finer separation size, and lower flow ratios. The JKCC is now being scaled up into a fill-size (480 mm) hydrocyclone in the third development stage-an industrial study. The 480 mm diameter unit will be tested in an Australian coal preparation plant, and directly compared with a commercial CC operating under the same conditions. Classifying cyclone performance for fine coal could be further improved if the unit is installed in an inclined position. The study using the 200 mm JKCC has revealed that sharpness of separation improved and the flow ratio to underflow was decreased by 43% as the cyclone inclination was varied from the vertical position (0degrees) to the horizontal position (90degrees). The separation size was not affected, although the feed rate was slightly decreased. To ensure self-emptying upon shutdown, it is recommended that the JKCC be installed at an inclination of 75-80degrees. At this angle the cyclone performance is very similar to that at a horizontal position. Similar findings have been derived from the testing of a conventional hydrocyclone. This may be of benefit to operations that require improved performance from their classifying cyclones in terms of sharpness of separation and flow ratio, while tolerating slightly reduced feed rate.
Resumo:
This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depthedose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depthedose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).
Resumo:
Introduction: In the XXI Century ’s Society the scientific investigation process has been growing steadily , and the field of the pharmaceutical research is one of the most enthusiastic and relevant . Here, it is very important to correlate observed functional alterations with possibly modified drug bio distribution patterns . Cancer, inflammation and inf ection are processes that induce many molecular intermediates like cytokines, chemokines and other chemical complexes that can alter the pharmacokinetics of many drugs. One cause of such changes is thought to be the modulator action of these complexes in t he P - Glyco p rotein activity, because they can act like inducers/inhibitors of MDR - 1 expression. This protein results from the expression of MDR - 1 gene, and acts as an ATP energy - dependent efflux pump, with their substrates including many drugs , like antiretrovirals, anticancers, anti - infectives, immunosuppressants, steroids or opioids . Objectives: Because of the lack of methods to provide helpful information in the investigation of in vivo molecular changes in Pgp activity during infection/infl ammation processes, and its value in the explanation of the altered drug pharmacokinetic, this paper want to evaluate the potential utility of 99m Tc - Sestamibi scintigraphy during this kind of health sciences investigation. Although the a im is indeed to create a technique to the in vivo study of Pgp activity, this preliminary Project only reaches the in vitro study phase, assumed as the first step in a n evaluation period for a new tool development. Materials and Methods: For that reason , we are performing in vitro studies of influx and efflux of 99m Tc - Sestamibi ( that is a substrate of Pgp) in hepatocytes cell line (HepG2). We are interested in clarify the cellular behavior of this radiopharmaceutical in Lipopolysaccharide(LPS) stimulated cells ( well known in vitro model of inflammation) to possibly approve this methodology. To validate the results, the Pgp expression will be finally evaluated using Western Blot technique. Results: Up to this moment , we still don’t have the final results, but we have already enough data to let us believe that LPS stimulation induce a downregulation of MDR - 1, and consequently Pgp, which could conduce to a prolonged retention of 99m Tc - Sestamibi in the inflamed cells . Conclusions: If and when this methodology demonstrate the promising results we expect, one will be able to con clude that Nuclear Medicine is an important tool to help evidence based research also on this specific field .
Resumo:
This paper presents work in progress, to develop an efficient and economic way to directly produce Technetium 99metastable (99mTc) using low-energy cyclotrons. Its importance is well established and relates with the increased global trouble in delivering 99mTc to Nuclear Medicine Departments relying on this radioisotope. Since the present delivery strategy has clearly demonstrated its intrinsic limits, our group decided to follow a distinct approach that uses the broad distribution of the low energy cyclotrons and the accessibility of Molybdenum 100 (100Mo) as the Target material. This is indeed an important issue to consider, since the system here presented, named CYCLOTECH, it is not based on the use of Highly Enriched (or even Low Enriched) Uranium 235 (235U), so entirely complying with the actual international trends and directives concerning the use of this potential highly critical material. The production technique is based on the nuclear reaction 100Mo (p,2n) 99mTc whose production yields have already been documented. Until this moment two Patent requests have already been submitted (the first at the INPI, in Portugal, and the second at the USPTO, in the USA); others are being prepared for submission on a near future. The object of the CYCLOTECH system is to present 99mTc to Nuclear Medicine radiopharmacists in a routine, reliable and efficient manner that, remaining always flexible, entirely blends with established protocols. To facilitate workflow and Radiation Protection measures, it has been developed a Target Station that can be installed on most of the existing PET cyclotrons and that will tolerate up to 400 μA of beam by allowing the beam to strike the Target material at an adequately oblique angle. The Target Station permits the remote and automatic loading and discharge of the Targets from a carriage of 10 Target bodies. On other hand, several methods of Target material deposition and Target substrates are presented. The object was to create a cost effective means of depositing and intermediate the target material thickness (25 - 100μm) with a minimum of loss on a substrate that is able to easily transport the heat associated with high beam currents. Finally, the separation techniques presented are a combination of both physical and column chemistry. The object was to extract and deliver 99mTc in the identical form now in use in radiopharmacies worldwide. In addition, the Target material is recovered and can be recycled.
Resumo:
Introduction: 188Re is a promising radionuclide for metabolic therapy because of the emission of high energy beta-particles. The development of watersoluble bone-seeking polymers such as PEI-MP (polyethyleneimine, functionalised with methylphosphonate-groups) that might be labeled with 188Re are recent approaches, with a strong potential for bone cancer treatment. The aim of this study was to evaluate the efficacy of 188Re-PEI-MP, as therapeutic agent for osteosarcoma, through in vitro and in vivo models.
Resumo:
In this work, SnxSy thin films have been grown on soda-lime glass substrates by sulphurization of metallic precursors in a nitrogen plus sulphur vapour atmosphere. Different sulphurization temperatures were tested, ranging from 300 °C to 520 °C. The resulting phases were structurally investigated by X-Ray Diffraction and Raman spectroscopy. Composition was studied using Energy Dispersive Spectroscopy being then correlated with the sulphurization temperature. Optical measurements were performed to obtain transmittance and reflectance spectra, from which the energy band gaps, were estimated. The values obtained were 1.17 eV for the indirect transition and for the direct transition the values varied from 1.26 eV to 1.57 eV. Electrical characterization using Hot Point Probe showed that all samples were p-type semiconductors. Solar cells were built using the structure: SLG/Mo/SnxSy/CdS/ZnO:Ga and the best result for solar cell efficiency was 0.17%.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic power consumption. The recent technology trends have equipped the modern embedded processors with the several sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling (DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static (leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach (ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate the effectiveness of our approach showing an improvement of up to 8 % over an existing work.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, Perfil Gestão e Sistemas Ambientais
Resumo:
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.
Resumo:
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. This research is concerned with studying the potential impacts on the electric utilities of large-scale adoption of plug-in electric vehicles from the perspective of electricity demand, fossil fuels use, CO2 emissions and energy costs. Simulations were applied to the Portuguese case study in order to analyze what would be the optimal recharge profile and EV penetration in an energy-oriented, an emissions-oriented and a cost-oriented objective. The objectives considered were: The leveling of load profiles, minimization of daily emissions and minimization of daily wholesale costs. Almost all solutions point to an off-peak recharge and a 50% reduction in daily wholesale costs can be verified from a peak recharge scenario to an off-peak recharge for a 2 million EVs in 2020. A 15% improvement in the daily total wholesale costs can be verified in the costs minimization objective when compared with the off-peak scenario result.