983 resultados para exact results
Resumo:
ORP2 is a member of mammalian oxysterol binding protein (OSBP)-related protein/gene family (ORPs), which is found in almost every eukaryotic organism. ORPs have been suggested to participate in the regulation of cellular lipid metabolism, vesicle trafficking and cellular signaling. ORP2 is a cytosolic protein that is ubiquitously expressed and most abundant in the brain. In previous studies employing stable cell lines with constitutive ORP2 overexpression ORP2 was shown to affect cellular cholesterol metabolism. The aim of this study was to characterize the properties and function of ORP2 further. ORP2 ligands were searched for among sterols and phosphoinositides using purified ORP2 and in vitro binding assays. As expected, ORP2 bound several oxysterols and cholesterol, the highest affinity ligand being 22(R)hydroxycholesterol. In addition, affinity for anionic membrane phospholipids, phosphoinositides was observed, which may assist in the membrane targeting of ORP2. Intracellular localization of ORP2 was also investigated. ORP2 was observed on the surface of cytoplasmic lipid droplets, which are storage organelles for neutral lipids. Lipid droplet targeting of ORP2 was inhibited when 22(R)hydroxycholesterol was added to the cells or when the N-terminal FFAT-motif of ORP2 was mutated, suggesting that oxysterols and the N-terminus of ORP2 regulate the localization and the function of ORP2. The role of ORP2 in cellular lipid metabolism was studied using HeLa cell lines that can be induced to overexpress ORP2. Overexpression of ORP2 was shown to enhance cholesterol efflux from the cells resulting in a decreased amount of cellular free cholesterol. ORP2 overexpressing cells responded to the loss of cholesterol by upregulating cholesterol synthesis and uptake. Intriguingly, also cholesterol esterification was increased in ORP2 overexpressing cells. These results may be explained by the ability of ORP2 to bind and thus transport cholesterol, which most likely leads to changes in cholesterol metabolism when ORP2 is overexpressed. ORP2 function was further investigated by silencing the endogenous ORP2 expression with short interfering RNAs (siRNA) in A431 cells. Silencing of ORP2 led to a delayed break-down of triglycerides under lipolytic conditions and an increased amount of cholesteryl esters in the presence of excess triglycerides. Together these results suggest that ORP2 is a sterol-regulated protein that functions on the surface of cytoplasmic lipid droplets to regulate the metabolism of triglycerides and cholesteryl esters. Although the exact mode of ORP2 action still remains unclear, this study serves as a good basis to investigate the molecular mechanisms and possible cell type specific functions of ORP2.
Resumo:
In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.
Resumo:
Molecular dynamics simulations have been carried out on all the jacalin-carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X-ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin-carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate-binding residues are consistent with the known thermodynamic parameters of jacalin-carbohydrate interactions. The simulations, along with X-ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin-carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009; 77:760-777.
Resumo:
Multipotent stem cells can self-renew and give rise to multiple cell types. One type of mammalian multipotent stem cells are neural stem cells (NSC)s, which can generate neurons, astrocytes and oligodendrocytes. NSCs are likely involved in learning and memory, but their exact role in cognitive function in the developing and adult brain is unclear. We have studied properties of NSCs in fragile X syndrome (FXS), which is the most common form of inherited mental retardation. FXS is caused by the lack of functional fragile X mental retardation protein (FMRP). FMRP is involved in the regulation of postsynaptic protein synthesis in a group I metabotropic glutamate receptor 5 (mGluR5)-dependent manner. In the absence of functional FMRP, the formation of functional synapses is impaired in the forebrain which results in alterations in synaptic plasticity. In our studies, we found that FMRP-deficient NSCs generated more neurons and less glia than control NSCs. The newborn neurons derived from FMRP-deficient NSCs showed an abnormally immature morphology. Furthermore, FMRP-deficient NSCs exhibited aberrant oscillatory Ca2+ responses to glutamate, which were specifically abolished by an antagonist of the mGluR5 receptor. The data suggested alterations in glutamatergic differentiation of FMRP-deficient NSCs and were further supported by an accumulation of cells committed to glutamatergic lineage in the subventricular zone of the embryonic Fmr1-knockout (Fmr1-KO) neocortex. Postnatally, the aberrant cells likely contributed to abnormal formation of the neocortex. The findings suggested a defect in the differentiation of distinct glutamatergic mGluR5 responsive cells in the absence of functional FMRP. Furthermore, we found that in the early postnatal Fmr1-KO mouse brain, the expression of mRNA for regulator of G-protein signalling-4 (RGS4) was decreased which was in line with disturbed G-protein signalling in NSCs lacking FMRP. Brain derived neurotrophic factor (BDNF) promotes neuronal differentiation of NSCs as the absence of FMRP was shown to do. This led us to study the effect of impaired BDNF/TrkB receptor signaling on NSCs by overexpression of TrkB.T1 receptor isoform. We showed that changes in the relative expression levels of the full-length and truncated TrkB isoforms influenced the replication capacity of NSCs. After the differentiation, the overexpression of TrkB.T1 increased neuronal turnover. To summarize, FMRP and TrkB signaling are involved in normal differentiation of NSCs in the developing brain. Since NSCs might have potential for therapeutic interventions in a variety of neurological disorders, our findings may be useful in the design of pharmacological interventions in neurological disorders of learning and memory.
Resumo:
Overview This report, published in conjunction with a summary overview of results of rounds 1–6, is the sixth in a series of laboratory-based evaluations of rapid diagnostic tests (RDTs) for malaria. It provides a comparative measure of their performance in a standardized way to distinguish between well and poorly performing tests. It can be used by malaria control programmes and guide WHO procurement recommendations for these diagnostic tools. The evaluation reported here was a joint project of the WHO Global Malaria Programme, the Foundation for Innovative New Diagnostics (FIND) and the United States Centers for Disease Control and Prevention (CDC) within the WHO-FIND Malaria RDT Evaluation Programme. The project was financed by FIND through a grant from UNITAID.
Resumo:
Background The estimated likelihood of lower limb amputation is 10 to 30 times higher amongst people with diabetes compared to those without diabetes. Of all non-traumatic amputations in people with diabetes, 85% are preceded by a foot ulcer. Foot ulceration associated with diabetes (diabetic foot ulcers) is caused by the interplay of several factors, most notably diabetic peripheral neuropathy (DPN), peripheral arterial disease (PAD) and changes in foot structure. These factors have been linked to chronic hyperglycaemia (high levels of glucose in the blood) and the altered metabolic state of diabetes. Control of hyperglycaemia may be important in the healing of ulcers. Objectives To assess the effects of intensive glycaemic control compared to conventional control on the outcome of foot ulcers in people with type 1 and type 2 diabetes. Search methods In December 2015 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; EBSCO CINAHL; Elsevier SCOPUS; ISI Web of Knowledge Web of Science; BioMed Central and LILACS. We also searched clinical trial databases, pharmaceutical trial databases and current international and national clinical guidelines on diabetes foot management for relevant published, non-published, ongoing and terminated clinical trials. There were no restrictions based on language or date of publication or study setting. Selection criteria Published, unpublished and ongoing randomised controlled trials (RCTs) were considered for inclusion where they investigated the effects of intensive glycaemic control on the outcome of active foot ulcers in people with diabetes. Non randomised and quasi-randomised trials were excluded. In order to be included the trial had to have: 1) attempted to maintain or control blood glucose levels and measured changes in markers of glycaemic control (HbA1c or fasting, random, mean, home capillary or urine glucose), and 2) documented the effect of these interventions on active foot ulcer outcomes. Glycaemic interventions included subcutaneous insulin administration, continuous insulin infusion, oral anti-diabetes agents, lifestyle interventions or a combination of these interventions. The definition of the interventional (intensive) group was that it should have a lower glycaemic target than the comparison (conventional) group. Data collection and analysis All review authors independently evaluated the papers identified by the search strategy against the inclusion criteria. Two review authors then independently reviewed all potential full-text articles and trials registry results for inclusion. Main results We only identified one trial that met the inclusion criteria but this trial did not have any results so we could not perform the planned subgroup and sensitivity analyses in the absence of data. Two ongoing trials were identified which may provide data for analyses in a later version of this review. The completion date of these trials is currently unknown. Authors' conclusions The current review failed to find any completed randomised clinical trials with results. Therefore we are unable to conclude whether intensive glycaemic control when compared to conventional glycaemic control has a positive or detrimental effect on the treatment of foot ulcers in people with diabetes. Previous evidence has however highlighted a reduction in risk of limb amputation (from various causes) in people with type 2 diabetes with intensive glycaemic control. Whether this applies to people with foot ulcers in particular is unknown. The exact role that intensive glycaemic control has in treating foot ulcers in multidisciplinary care (alongside other interventions targeted at treating foot ulcers) requires further investigation.
Resumo:
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.
Resumo:
Long QT syndrome is a congenital or acquired arrhythmic disorder which manifests as a prolonged QT-interval on the electrocardiogram and as a tendency to develop ventricular arrhythmias which can lead to sudden death. Arrhythmias often occur during intense exercise and/or emotional stress. The two most common subtypes of LQTS are LQT1, caused by mutations in the KCNQ1 gene and LQT2, caused by mutations in the KCNH2 gene. LQT1 and LQT2 patients exhibit arrhythmias in different types of situations: in LQT1 the trigger is usually vigorous exercise whereas in LQT2 arrhythmia results from the patient being startled from rest. It is not clear why trigger factors and clinical outcome differ from each other in the different LQTS subtypes. It is possible that stress hormones such as catecholamines may show different effects depending on the exact nature of the genetic defect, or sensitivity to catecholamines varies from subject to subject. Furthermore, it is possible that subtle genetic variants of putative modifier genes, including those coding for ion channels and hormone receptors, play a role as determinants of individual sensitivity to life-threatening arrhythmias. The present study was designed to identify some of these risk modifiers. It was found that LQT1 and LQT2 patients show an abnormal QT-adaptation to both mental and physical stress. Furthermore, as studied with epinephrine infusion experiments while the heart was paced and action potentials were measured from the right ventricular septum, LQT1 patients showed repolarization abnormalities which were related to their propensity to develop arrhythmia during intense, prolonged sympathetic tone, such as exercise. In LQT2 patients, this repolarization abnormality was noted already at rest corresponding to their arrhythmic episodes as a result of intense, sudden surges in adrenergic tone, such as fright or rage. A common KCNH2 polymorphism was found to affect KCNH2 channel function as demonstrated by in vitro experiments utilizing mammalian cells transfected with the KCNH2 potassium channel as well as QT-dynamics in vivo. Finally, the present study identified a common β-1-adrenergic receptor genotype that is related a shorter QT-interval in LQT1 patients. Also, it was discovered that compound homozygosity for two common β-adrenergic polymorphisms was related to the occurrence of symptoms in the LQT1 type of long QT syndrome. The studies demonstrate important genotype-phenotype differences between different LQTS subtypes and suggest that common modifier gene polymorphisms may affect cardiac repolarization in LQTS. It will be important in the future to prospectively study whether variant gene polymorphisms will assist in clinical risk profiling of LQTS patients.
Resumo:
The modern unilateral surgical treatment of otosclerosis started in 1956. Simultaneous bilateral surgery has not been reported in stapes surgery and in case of bilateral otosclerosis ears are operated in two different sessions. Simultaneous surgery would give the patient the opportunity to gain advantages of bilateral hearing within one session, with less time spent in hospital and on sick leave. The mechanism for vestibular symptoms and the exact end organ affected after surgery is still unveiled. This thesis presents the results of experimental simultaneous bilateral stapes surgery, and vestibular symptoms and findings before and after unilateral stapes surgery. In addition, we explore reasons for outpatient failures in otosclerosis surgery. -- Study I examines the outcome of simultaneous bilateral surgery. Hearing was evaluated with standard pure tone and speech audiograms and vestibular apparatus with visual feedback posturography (VFP) during the one-year follow-up. Subjective symptoms and quality of life were assessed with questionnaires. In study II, reasons for outpatient failures in stapes surgery were explored. Forty-seven consecutive stapedotomies and stapedectomies performed by the same surgeon were included, and the effect of failures on hearing results were analysed. Vestibular symptoms and the end organ(s) affected after stapes surgery were investigated in studies III and IV. With video-oculography (VOG), nystagmus was measured preoperatively, and at one week, one month and 3 months postoperatively in the first phase (III). In the second phase (IV), recordings were obtained some hours postoperatively. The hearing results of the simultaneous bilateral surgery were comparable with unilateral surgeries reported. Recovery from the surgery was fast. Significant improvement in performance and quality of life was noted already month after operation in subjective evaluations. Based on these results, simultaneous bilateral surgery is a suitable approach in bilateral otosclerosis Significantly more outpatient failures occurred for medical reasons in the stapedectomy group (13%) than in the stapedotomy group (2%). Stapedotomy should be favoured if outpatient surgery is planned. However, unplanned admission did not worsen the prognosis. VOG measurements in study III did not show any specific type of nystagmus in patients having vestibular symptoms postoperatively. However, VOG measurements immediately after surgery (IV) revealed nystagmus consistent with a minor disturbance of the semicircular canals in 33% of the patients. Subjectively, half of the patients reported vestibular symptoms that were probably of diverse origin, and could have originated from both otolith and semicircular canal parts of the vestibular organ. Since vestibular symptoms and signs are mild, patients may be safely discharged some hours after stapes surgery.
Resumo:
Clozapine is the most effective drug in treating therapy-resistant schizophrenia and may even be superior to all other antipsychotics. However, its use is limited by a high incidence (approximately 0.8%) of a severe hematological side effect, agranulocytosis. The exact molecular mechanism(s) of clozapine-induced agranulocytosis is still unknown. We investigated the mechanisms behind responsiveness to clozapine therapy and the risk of developing agranulocytosis by performing an HLA (human leukocyte antigens) association study in patients with schizophrenia. The first group comprised patients defined by responsiveness to first-generation antipsychotics (FGAs) (n= 19). The second group was defined by a lack of response to FGAs but responsiveness to clozapine (n=19). The third group of patients had a history of clozapine-induced granulocytopenia or agranulocytosis (n=26). Finnish healthy blood donors served as controls (n= 120). We found a significantly increased frequency of HLA-A1 among patients who were refractory to FGAs but responsive to clozapine. We also found that the frequency of HLA-A1 was low in patients with clozapine-induced neutropenia or agranulocytosis. These results suggest that HLA-A1 may predict a good therapeutic outcome and a low risk of agranulocytosis and therefore HLA typing may aid in the selection of patients for clozapine therapy. Furthermore, in a subgroup of schizophrenia, HLA-A1 may be in linkage disequilibrium with some vulnerability genes in the MHC (major histocompatibility complex) region on chromosome 6. These genes could be involved in antipsychotic drug response and clozapine-induced agranulocytosis. In addition, we investigated the effect of clozapine on gene expression in granulocytes by performing a microarray analysis on blood leukocytes of 8 schizophrenic patients who had started clozapine therapy for the first time. We identified an altered expression in 4 genes implicated in the maturation or apoptosis of granulocytes: MPO (myeloperoxidase precursor), MNDA (myeloid cell nuclear differentiation antigen), FLT3LG (Fms-related tyrosine kinase 3 ligand) and ITGAL (antigen CD11A, lymphocyte function-associated antigen 1). The altered expression of these genes following clozapine administration may suggest their involvement in clozapine-induced agranulocytosis. Finally, we investigated whether or not normal human bone marrow mesenchymal stromal cells (MSC) are sensitive to clozapine. We treated cultures of human MSCs and human skin fibroblasts with 10 µM of unmodified clozapine and with clozapine bioactivated by oxidation. We found that, independent of bioactivation, clozapine was cytotoxic to MSCs in primary culture, whereas clozapine at the same concentration stimulated the growth of human fibroblasts. This suggests that direct cytotoxicity to MSCs is one possible mechanism by which clozapine induces agranulocytosis.
Resumo:
This paper presents a novel RTK-based GNSS Lagrangian drifter system that is capable of monitoring water velocity, turbulence and dispersion coefficients of river and estuarine. The Lagrangian drifters use the dual-frequency real time kinematic (RTK) technique for both position and velocity estimations. The capsule is designed to meet the requirements such as minimizing height, diameter, minimizing the direct wind drag, positive buoyancy for satellite signal reception and stability, and waterproof housing for electronic components, such as GNSS receiver and computing board. The collected GNSS data are processed with post-processing RTK software. Several experiments have been carried out in two rivers in Brisbane and Sunshine Coast in Queensland. Results show that the high accuracy GNSS-drifters can be used to measure dispersion coefficient resulting from sub-tidal velocity fluctuations in shallow tidal water. In addition, the RTK-GNSS drifters respond well to vertical motion and thus could be applicable to flood monitoring.
Resumo:
Background: Helicobacter pylori infection is usually acquired in early childhood and is rarely resolved spontaneously. Eradication therapy is currently recommended virtually to all patients. While the first and second therapies are prescribed without knowing the antibiotic resistance of the bacteria, it is important to know the primary resistance in the population. Aim: This study evaluates the primary resistance of H. pylori among patients in primary health care throughout Finland, the efficacy of three eradication regimens, the symptomatic response to successful therapy, and the effect of smoking on gastric histology and humoral response in H. pylori-positive patients. Patients and methods: A total of 23 endoscopy referral centres located throughout Finland recruited 342 adult patients with positive rapid urease test results, who were referred to upper gastrointestinal endoscopy from primary health care. Gastric histology, H. pylori resistance and H. pylori serology were evaluated. The patients were randomized to receive a seven-day regimen, comprising 1) lansoprazole 30 mg b.d., amoxicillin 1 g b.d. and metronidazole 400 mg t.d. (LAM), 2) lansoprazole 30 mg b.d., amoxicillin 1 g b.d. and clarithromycin 500 mg b.d. (LAC) or 3) ranitidine bismuth citrate 400 mg b.d., metronidazole 400 mg t.d. and tetracycline 500 mg q.d. (RMT). The eradication results were assessed, using the 13C-urea breath test 4 weeks after therapy. The patients completed a symptom questionnaire before and a year after the therapy. Results: Primary resistance of H. pylori to metronidazole was 48% among women and 25% among men. In women, metronidazole resistance correlated with previous use of antibiotics for gynaecologic infections and alcohol consumption. Resistance rate to clarithromycin was only 2%. Intention-to-treat cure rates of LAM, LAC, and RMT were 78%, 91% and 81%. While in metronidazole-sensitive cases the cure rates with LAM, LAC and RMT were similar, in metronidazole resistance LAM and RMT were inferior to LAC (53%, 67% and 84%). Previous antibiotic therapies reduced the efficacy of LAC, to the level of RMT. Dyspeptic symptoms in the Gastrointestinal Symptoms Rating Scale (GSRS) were decreased by 30.5%. In logistic regression analysis, duodenal ulcer, gastric antral neutrophilic inflammation and age from 50 to 59 years independently predicted greater decrease in dyspeptic symptoms. In the gastric body, smokers had milder inflammation and less atrophy and in the antrum denser H. pylori load. Smokers also had lower IgG antibody titres against H. pylori and a smaller proportional decrease in antibodies after successful eradication. Smoking tripled the risk of duodenal ulcers. Conclusions: in Finland H. pylori resistance to clarithromycin is low, but metronidazole resistance among women is high making metronidazole-based therapies unfavourable. Thus, LAC is the best choice for first-line eradication therapy. The effect of eradication on dyspeptic symptoms was only modest. Smoking slows the progression of atrophy in the gastric body.
Resumo:
We explore an isoparametric interpolation of total quaternion for geometrically consistent, strain-objective and path-independent finite element solutions of the geometrically exact beam. This interpolation is a variant of the broader class known as slerp. The equivalence between the proposed interpolation and that of relative rotation is shown without any recourse to local bijection between quaternions and rotations. We show that, for a two-noded beam element, the use of relative rotation is not mandatory for attaining consistency cum objectivity and an appropriate interpolation of total rotation variables is sufficient. The interpolation of total quaternion, which is computationally more efficient than the one based on local rotations, converts nodal rotation vectors to quaternions and interpolates them in a manner consistent with the character of the rotation manifold. This interpolation, unlike the additive interpolation of total rotation, corresponds to a geodesic on the rotation manifold. For beam elements with more than two nodes, however, a consistent extension of the proposed quaternion interpolation is difficult. Alternatively, a quaternion-based procedure involving interpolation of relative rotations is proposed for such higher order elements. We also briefly discuss a strategy for the removal of possible singularity in the interpolation of quaternions, proposed in [I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133]. The strain-objectivity and path-independence of solutions are justified theoretically and then demonstrated through numerical experiments. This study, being focused only on the interpolation of rotations, uses a standard finite element discretization, as adopted by Simo and Vu-Quoc [J.C. Simo, L. Vu-Quoc, A three-dimensional finite rod model part II: computational aspects, Comput. Methods Appl. Mech. Engrg. 58 (1986) 79–116]. The rotation update is achieved via quaternion multiplication followed by the extraction of the rotation vector. Nodal rotations are stored in terms of rotation vectors and no secondary storages are required.