958 resultados para elliptic curves
Resumo:
2010 Mathematics Subject Classification: 35B65, 35S05, 35A20.
Resumo:
2010 Mathematics Subject Classification: Primary 35J70; Secondary 35J15, 35D05.
Resumo:
2010 Mathematics Subject Classification: 74J30, 34L30.
Resumo:
2010 Mathematics Subject Classification: 35J65, 35K60, 35B05, 35R05.
Resumo:
2002 Mathematics Subject Classification: 35J15, 35J25, 35B05, 35B50
Resumo:
2000 Mathematics Subject Classification: 52A10.
Resumo:
2000 Mathematics Subject Classification: 35J70, 35P15.
Resumo:
The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.
Resumo:
Los dominios finos, es decir, dominios sustancialmente más pequeños en alguna o varias de sus direcciones que en el resto, aparecen en muchos campos de la ciencia. Por ejemplo, dinámica de fluídos (lubricación, conducción de fluídos en tubos delgados, dinámica de oceanos...), mecánica de sólidos (barras delgadas, placas o cáscaras) o incluso en fisiología (circulación de la sangre). Así, el amplio número de posibles aplicaciones a situaciones reales ha hecho que la investigación de modelos de ecuaciones en derivadas parciales en dominios finos se convierta en un tema muy estudiado en los últimos años. Desde un punto de vista matemático, el estudio de las soluciones de una EDP en un dominio fino es un caso particular de la cuestión general relativa a cómo la variación de los dominios afecta al comportamiento de las soluciones de la EDP. En este marco, obtener la ecuación límite del modelo considerado, comparar la solución de la ecuación límite y las soluciones del problema en el dominio fino, analizar los coeficientes de la ecuación límite y comprender cómo la geometría del dominio afecta a la ecuación límite son algunos de los objetivos que deberían ser alcanzados. De hecho, es importante señalar que este tipo de cuestiones no sólo proporcionan importantes resultados teóricos sino que son muy relevantes desde el punto de vista de las aplicaciones. Por ejemplo, ser capaz de reducir el problema original a un problema mucho más sencillo, problema límite, que refleje las principales características del problema de partida puede ser muy útil para ingenieros y físicos...
Resumo:
We study the existence of solutions of quasilinear elliptic systems involving $N$ equations and a measure on the right hand side, with the form $$\left\{\begin{array}{ll} -\sum_{i=1}^n \frac{\partial}{\partial x_i}\left(\sum\limits_{\beta=1}^{N}\sum\limits_{j=1}^{n}% a_{i,j}^{\alpha,\beta}\left( x,u\right)\frac{\partial}{\partial x_j}u^\beta\right)=\mu^\alpha& \mbox{ in }\Omega ,\\ u=0 & \mbox{ on }\partial\Omega, \end{array}\right.$$ where $\alpha\in\{1,\dots,N\}$ is the equation index, $\Omega$ is an open bounded subset of $\mathbb{R}^{n}$, $u:\Omega\rightarrow\mathbb{R}^{N}$ and $\mu$ is a finite Randon measure on $\mathbb{R}^{n}$ with values into $\mathbb{R}^{N}$. Existence of a solution is proved for two different sets of assumptions on $A$. Examples are provided that satisfy our conditions, but do not satisfy conditions required on previous works on this matter.
Resumo:
This Note aims at presenting a simple and efficient procedure to derive the structure of high-order corrector estimates for the homogenization limit applied to a semi-linear elliptic equation posed in perforated domains. Our working technique relies on monotone iterations combined with formal two-scale homogenization asymptotics. It can be adapted to handle more complex scenarios including for instance nonlinearities posed at the boundary of perforations and the vectorial case, when the model equations are coupled only through the nonlinear production terms.
Resumo:
We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.