Quasilinear elliptic systems with measure data


Autoria(s): Leonetti, Francesco; Rocha, Eugénio; Staicu, Vasile
Data(s)

30/05/2016

01/05/2016

Resumo

We study the existence of solutions of quasilinear elliptic systems involving $N$ equations and a measure on the right hand side, with the form $$\left\{\begin{array}{ll} -\sum_{i=1}^n \frac{\partial}{\partial x_i}\left(\sum\limits_{\beta=1}^{N}\sum\limits_{j=1}^{n}% a_{i,j}^{\alpha,\beta}\left( x,u\right)\frac{\partial}{\partial x_j}u^\beta\right)=\mu^\alpha& \mbox{ in }\Omega ,\\ u=0 & \mbox{ on }\partial\Omega, \end{array}\right.$$ where $\alpha\in\{1,\dots,N\}$ is the equation index, $\Omega$ is an open bounded subset of $\mathbb{R}^{n}$, $u:\Omega\rightarrow\mathbb{R}^{N}$ and $\mu$ is a finite Randon measure on $\mathbb{R}^{n}$ with values into $\mathbb{R}^{N}$. Existence of a solution is proved for two different sets of assumptions on $A$. Examples are provided that satisfy our conditions, but do not satisfy conditions required on previous works on this matter.

Identificador

0362-546X

http://hdl.handle.net/10773/15597

Idioma(s)

eng

Publicador

Elsevier

Relação

FCT - PEst-OE/MAT/UI4106/2014

FCT - SFRH/BSAB/113647/2015

http://dx.doi.org/10.1016/j.na.2016.04.002

Direitos

restrictedAccess

Palavras-Chave #Elliptic systems #Existence of solutions #Measures
Tipo

article