946 resultados para Shock Tube
Resumo:
Abstract Introduction Mechanisms underlying inotropic failure in septic shock are incompletely understood. We previously identified the presence of exosomes in the plasma of septic shock patients. These exosomes are released mainly by platelets, produce superoxide, and induce apoptosis in vascular cells by a redox-dependent pathway. We hypothesized that circulating platelet-derived exosomes could contribute to inotropic dysfunction of sepsis. Methods We collected blood samples from 55 patients with septic shock and 12 healthy volunteers for exosome separation. Exosomes from septic patients and healthy individuals were investigated concerning their myocardial depressant effect in isolated heart and papillary muscle preparations. Results Exosomes from the plasma of septic patients significantly decreased positive and negative derivatives of left ventricular pressure in isolated rabbit hearts or developed tension and its first positive derivative in papillary muscles. Exosomes from healthy individuals decreased these variables non-significantly. In hearts from rabbits previously exposed to endotoxin, septic exosomes decreased positive and negative derivatives of ventricular pressure. This negative inotropic effect was fully reversible upon withdrawal of exosomes. Nitric oxide (NO) production from exosomes derived from septic shock patients was demonstrated by fluorescence. Also, there was an increase in myocardial nitrate content after exposure to septic exosomes. Conclusion Circulating platelet-derived exosomes from septic patients induced myocardial dysfunction in isolated heart and papillary muscle preparations, a phenomenon enhanced by previous in vivo exposure to lipopolysaccharide. The generation of NO by septic exosomes and the increased myocardial nitrate content after incubation with exosomes from septic patients suggest an NO-dependent mechanism that may contribute to myocardial dysfunction of sepsis.
Resumo:
Abstract Background Septic shock is the first cause of death in Intensive Care Units. Despite experimental data showing increased inflammatory response of aged animals following infection, the current accepted hypothesis claims that aged patients are immunocompromised, when compared to young individuals. Results Here, we describe a prospective cohort study designed to analyze the immune profile of this population. Conclusion Older people are as immunocompetent as the young individual, regarding the cytokines, chemokines and growth factors response to devastating infection.
Resumo:
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.
Resumo:
A new species of cheilostome bryozoan, Fenestrulina commensalis n. sp., was collected in December 2008 by scuba at 5–10 meters depth at Guaibura Beach, Guarapari, Espírito Santo state, southeastern Brazil. The specimen was found associated with tubes of the cerianthid Pachycerianthus sp., representing the first commensal association between a bryozoan and a tube-dwelling anemone. Fenestrulina commensalis n. sp. is the third species of the genus found in Brazilian waters; it is distinguished from other Atlantic species of Fenestrulina by its small angular orificial condyles, a single oral spine and basal anchoring rhizoids arising from abfrontal pore chambers. Morphological adaptations to encrust the tubes of cerianthids include anchoring rootlets and weakly contiguous zooids. These morphological features allow the colony the flexibility to grow around the tube and feed relatively undisturbed by silt and detritus, being raised well above the softsediment substratum in which the tube-anemone grows.
Resumo:
Helicobacter pylori, un patogeno umano in grado di colonizzare la nicchia gastrica, è associato a patologie del tratto gastrointestinale di varia gravità. Per sopravvivere nell’ambiente ostile dello stomaco dell’ospite, e mettere in atto un’infezione persistente, il batterio si serve di una serie di fattori di virulenza che includono anche le proteine Heat Shock (chaperone). I principali geni codificanti le proteine chaperone in H. pylori sono organizzati in tre operoni trascritti dall’RNA polimerasi contenente il fattore sigma vegetativo σ80. La trascrizione di due dei tre operoni è regolata negativamente da due regolatori trascrizionali, HspR e HrcA, mentre il terzo operone è represso solo da HspR. Fino ad ora, studi molecolari per la comprensione del ruolo di ciascuna proteina nel controllo trascrizionale dei geni heat shock sono stati ostacolati dalla citotossicità ed insolubilità di HrcA quando espressa in sistemi eterologhi. In questo lavoro, è stata analizzata la sequenza amminoacidica di HrcA ed è stata confermata sperimentalmente la predizione bioinformatica della sua associazione con la membrana interna. La citotossicità e l’insolubilità di HrcA in E. coli sono state alleviate inducendone l’espressione a 42°C. Saggi in vitro con le proteine ricombinanti purificate, HspR e HrcA, hanno consentito di definire i siti di legame dei due repressori sui promotori degli operoni heat shock. Ulteriori saggi in vitro hanno suggerito che l’affinità di HrcA per gli operatori è aumentata dalla chaperonina GroESL. Questi dati contribuiscono parzialmente alla comprensione del meccanismo di repressione della trascrizione espletato da HrcA e HspR e permettono di ipotizzare il coinvolgimento di altri regolatori trascrizionali. L’analisi di RNA estratti dal ceppo selvatico e dai mutanti hrcA, hspR e hrcA/hspR di H.pylori su DNAmacroarrays non ha evidenziato il coinvolgimento di altri regolatori trascrizionali, ma ha permesso l’identificazione di un gruppo di geni indotti da HrcA e/ HspR. Questi geni sono coinvolti nella biosintesi e regolazione dell’apparato flagellare, suggerendo un’interconnessione tra la risposta heat shock e la motilità e chemiotassi del batterio.
Resumo:
Laser shock peening is a technique similar to shot peening that imparts compressive residual stresses in materials for improving fatigue resistance. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbo-machinery, airframe structures, and medical appliances. The transient nature of the LSP phenomenon and the high rate of the laser's dynamic make real time in-situ measurement of laser/material interaction very challenging. For this reason and for the high cost of the experimental tests, reliable analytical methods for predicting detailed effects of LSP are needed to understand the potential of the process. Aim of this work has been the prediction of residual stress field after Laser Peening process by means of Finite Element Modeling. The work has been carried out in the Stress Methods department of Airbus Operations GmbH (Hamburg) and it includes investigation on compressive residual stresses induced by Laser Shock Peening, study on mesh sensitivity, optimization and tuning of the model by using physical and numerical parameters, validation of the model by comparing it with experimental results. The model has been realized with Abaqus/Explicit commercial software starting from considerations done on previous works. FE analyses are “Mesh Sensitive”: by increasing the number of elements and by decreasing their size, the software is able to probe even the details of the real phenomenon. However, these details, could be only an amplification of real phenomenon. For this reason it was necessary to optimize the mesh elements' size and number. A new model has been created with a more fine mesh in the trough thickness direction because it is the most involved in the process deformations. This increment of the global number of elements has been paid with an "in plane" size reduction of the elements far from the peened area in order to avoid too high computational costs. Efficiency and stability of the analyses has been improved by using bulk viscosity coefficients, a merely numerical parameter available in Abaqus/Explicit. A plastic rate sensitivity study has been also carried out and a new set of Johnson Cook's model coefficient has been chosen. These investigations led to a more controllable and reliable model, valid even for more complex geometries. Moreover the study about the material properties highlighted a gap of the model about the simulation of the surface conditions. Modeling of the ablative layer employed during the real process has been used to fill this gap. In the real process ablative layer is a super thin sheet of pure aluminum stuck on the masterpiece. In the simulation it has been simply reproduced as a 100µm layer made by a material with a yield point of 10MPa. All those new settings has been applied to a set of analyses made with different geometry models to verify the robustness of the model. The calibration of the model with the experimental results was based on stress and displacement measurements carried out on the surface and in depth as well. The good correlation between the simulation and experimental tests results proved this model to be reliable.
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses up to several mm underneath the surface of metal components in order to improve the detrimental effects of crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior of thin Aluminum specimens with one or more LSP stripes defining a compressive residual stress area. The LSP treatment has been applied as crack retardation stripes perpendicular to the crack growing direction, with the objective of slowing down the crack when approaching the LSP patterns. Different finite element approaches have been implemented to predict the residual stress field left by the laser treatment, mostly by means of the commercial software Abaqus/Explicit. The Afgrow software has been used to predict the crack growth behavior of the component following the laser peening treatment and to detect the improvement in fatigue life comparing to the specimen baseline. Furthermore, an analytical model has been implemented on the Matlab software to make more accurate predictions on fatigue life of the treated components. An educational internship at the Research and Technologies Germany- Hamburg department of Airbus helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: -To up to date Literature Survey related to laser shock peening in metallic structures -To validate the FE models developed against experimental measurements at coupon level -To develop design of crack growth slow down in centered and edge cracked tension specimens based on residual stress engineering approach using laser peened patterns transversal to the crack path -To predict crack growth behavior of thin aluminum panels -To validate numerical and analytical results by means of experimental tests.
Resumo:
Temperature and light intensity is the most important environmental parameters that influence circadian cycle of scleractinian corals. In this context, modulation of the biomarkers Hsp60 and Hsp70 in situ was investigated by three different healthy coral species (Acropora tenuis, Echinopora lamellosa and Porites lobata) not stress induced during time course of 24h. Significance species-specific modulation under natural conditions is displayed by all corals under study. A strong fluctuation in Hsps expression is shown by the most susceptible, branched coral A. tenuis, instead of fine and low modulation is shown by the massive coral P. lobata. From the results match between morphology difference and physiological difference response its suggest and similarity pattern between Hsps with different cellular compartments location is suggested too. Starting from this study health of coral reefs could be able to be investigated in the future with a set of biomarkers composed also by Hsps which will be set up.
Resumo:
The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA.
Resumo:
Sphingosine kinases (SKs) convert sphingosine to sphingosine 1-phosphate (S1P), which is a bioactive lipid that regulates a variety of cellular processes including proliferation, differentiation and migration.
Resumo:
Plasma copeptin levels before and during exogenous arginine vasopressin infusion (AVP) were evaluated, and the value of copeptin levels before AVP therapy to predict complications during AVP therapy and outcome in vasodilatory shock patients was determined.
Resumo:
The aim of this survey was to investigate clinicians' current approach to the haemodynamic management and resuscitation endpoints in septic shock.