967 resultados para Real systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of complex systems with n components typically have order n<sup>2</sup> parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species’ trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to use virtual reality as a sport analysis tool, we need to be sure that an immersed athlete reacts realistically in a virtual environment. This has been validated for a real handball goalkeeper facing a virtual thrower. However, we currently ignore which visual variables induce a realistic motor behavior of the immersed handball goalkeeper. In this study, we used virtual reality to dissociate the visual information related to the movements of the player from the visual information related to the trajectory of the ball. Thus, the aim is to evaluate the relative influence of these different visual information sources on the goalkeeper's motor behavior. We tested 10 handball goalkeepers who had to predict the final position of the virtual ball in the goal when facing the following: only the throwing action of the attacking player (TA condition), only the resulting ball trajectory (BA condition), and both the throwing action of the attacking player and the resulting ball trajectory (TB condition). Here we show that performance was better in the BA and TB conditions, but contrary to expectations, performance was substantially worse in the TA condition. A significant effect of ball landing zone does, however, suggest that the relative importance between visual information from the player and the ball depends on the targeted zone in the goal. In some cases, body-based cues embedded in the throwing actions may have a minor influence on the ball trajectory and vice versa. Kinematics analysis was then combined with these results to determine why such differences occur depending on the ball landing zone and consequently how it can clarify the role of different sources of visual information on the motor behavior of an athlete immersed in a virtual environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perfect information is seldom available to man or machines due to uncertainties inherent in real world problems. Uncertainties in geographic information systems (GIS) stem from either vague/ambiguous or imprecise/inaccurate/incomplete information and it is necessary for GIS to develop tools and techniques to manage these uncertainties. There is a widespread agreement in the GIS community that although GIS has the potential to support a wide range of spatial data analysis problems, this potential is often hindered by the lack of consistency and uniformity. Uncertainties come in many shapes and forms, and processing uncertain spatial data requires a practical taxonomy to aid decision makers in choosing the most suitable data modeling and analysis method. In this paper, we: (1) review important developments in handling uncertainties when working with spatial data and GIS applications; (2) propose a taxonomy of models for dealing with uncertainties in GIS; and (3) identify current challenges and future research directions in spatial data analysis and GIS for managing uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-processing (PP) of received symbol vector and channel matrices is an essential pre-requisite operation for Sphere Decoder (SD)-based detection of Multiple-Input Multiple-Output (MIMO) wireless systems. PP is a highly complex operation, but relative to the total SD workload it represents a relatively small fraction of the overall computational cost of detecting an OFDM MIMO frame in standards such as 802.11n. Despite this, real-time PP architectures are highly inefficient, dominating the resource cost of real-time SD architectures. This paper resolves this issue. By reorganising the ordering and QR decomposition sub operations of PP, we describe a Field Programmable Gate Array (FPGA)-based PP architecture for the Fixed Complexity Sphere Decoder (FSD) applied to 4 × 4 802.11n MIMO which reduces resource cost by 50% as compared to state-of-the-art solutions whilst maintaining real-time performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a unique environment whose features are able to satisfy requirements for both virtual maintenance and virtual manufacturing through the conception of original virtual reality (VR) architecture. Virtual Reality for the Maintainability and Assemblability Tests (VR_MATE) encompasses VR hardware and software and a simulation manager which allows customisation of the architecture itself as well as interfacing with a wide range of devices employed in the simulations. Two case studies are presented to illustrate VR_MATE's unique ability to allow for both maintainability tests and assembly analysis of an aircraft carriage and a railway coach cooling system respectively. The key impact of this research is the demonstration of the potentialities of using VR techniques in industry and its multiple applications despite the subjective character within the simulation. VR_MATE has been presented as a framework to support the strategic and operative objectives of companies to reduce product development time and costs whilst maintaining product quality for applications which would be too expensive to simulate and evaluate in the real world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a method for the detection and classification of multiple events in an electrical power system in real-time, namely; islanding, high frequency events (loss of load) and low frequency events (loss of generation). This method is based on principal component analysis of frequency measurements and employs a moving window approach to combat the time-varying nature of power systems, thereby increasing overall situational awareness of the power system. Numerical case studies using both real data, collected from the UK power system, and simulated case studies, constructed using DigSilent PowerFactory, for islanding events, as well as both loss of load and generation dip events, are used to demonstrate the reliability of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NanoStreams explores the design, implementation,and system software stack of micro-servers aimed at processingdata in-situ and in real time. These micro-servers can serve theemerging Edge computing ecosystem, namely the provisioningof advanced computational, storage, and networking capabilitynear data sources to achieve both low latency event processingand high throughput analytical processing, before consideringoff-loading some of this processing to high-capacity datacentres.NanoStreams explores a scale-out micro-server architecture thatcan achieve equivalent QoS to that of conventional rack-mountedservers for high-capacity datacentres, but with dramaticallyreduced form factors and power consumption. To this end,NanoStreams introduces novel solutions in programmable & con-figurable hardware accelerators, as well as the system softwarestack used to access, share, and program those accelerators.Our NanoStreams micro-server prototype has demonstrated 5.5×higher energy-efficiency than a standard Xeon Server. Simulationsof the microserver’s memory system extended to leveragehybrid DDR/NVM main memory indicated 5× higher energyefficiencythan a conventional DDR-based system. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os Sistemas Embarcados Distribuídos (SEDs) estão, hoje em dia, muito difundidos em vastas áreas, desde a automação industrial, a automóveis, aviões, até à distribuição de energia e protecção do meio ambiente. Estes sistemas são, essencialmente, caracterizados pela integração distribuída de aplicações embarcadas, autónomas mas cooperantes, explorando potenciais vantagens em termos de modularidade, facilidade de manutenção, custos de instalação, tolerância a falhas, entre outros. Contudo, o ambiente operacional onde se inserem estes tipos de sistemas pode impor restrições temporais rigorosas, exigindo que o sistema de comunicação subjacente consiga transmitir mensagens com garantias temporais. Contudo, os SEDs apresentam uma crescente complexidade, uma vez que integram subsistemas cada vez mais heterogéneos, quer ao nível do tráfego gerado, quer dos seus requisitos temporais. Em particular, estes subsistemas operam de forma esporádica, isto é, suportam mudanças operacionais de acordo com estímulos exteriores. Estes subsistemas também se reconfiguram dinamicamente de acordo com a actualização dos seus requisitos e, ainda, têm lidar com um número variável de solicitações de outros subsistemas. Assim sendo, o nível de utilização de recursos pode variar e, desta forma, as políticas de alocação estática tornam-se muito ineficientes. Consequentemente, é necessário um sistema de comunicação capaz de suportar com eficácia reconfigurações e adaptações dinâmicas. A tecnologia Ethernet comutada tem vindo a emergir como uma solução sólida para fornecer comunicações de tempo-real no âmbito dos SEDs, como comprovado pelo número de protocolos de tempo-real que foram desenvolvidos na última década. No entanto, nenhum dos protocolos existentes reúne as características necessárias para fornecer uma eficiente utilização da largura de banda e, simultaneamente, para respeitar os requisitos impostos pelos SEDs. Nomeadamente, a capacidade para controlar e policiar tráfego de forma robusta, conjugada com suporte à reconfiguração e adaptação dinâmica, não comprometendo as garantias de tempo-real. Esta dissertação defende a tese de que, pelo melhoramento dos comutadores Ethernet para disponibilizarem mecanismos de reconfiguração e isolamento de tráfego, é possível suportar aplicações de tempo-real críticas, que são adaptáveis ao ambiente onde estão inseridas.Em particular, é mostrado que as técnicas de projecto, baseadas em componentes e apoiadas no escalonamento hierárquico de servidores de tráfego, podem ser integradas nos comutadores Ethernet para alcançar as propriedades desejadas. Como suporte, é fornecida, também, uma solução para instanciar uma hierarquia reconfigurável de servidores de tráfego dentro do comutador, bem como a análise adequada ao modelo de escalonamento. Esta última fornece um limite superior para o tempo de resposta que os pacotes podem sofrer dentro dos servidores de tráfego, com base unicamente no conhecimento de um dado servidor e na hierarquia actual, isto é, sem o conhecimento das especifidades do tráfego dentro dos outros servidores. Finalmente, no âmbito do projecto HaRTES foi construído um protótipo do comutador Ethernet, o qual é baseado no paradigma “Flexible Time-Triggered”, que permite uma junção flexível de uma fase síncrona para o tráfego controlado pelo comutador e uma fase assíncrona que implementa a estrutura hierárquica de servidores referidos anteriormente. Além disso, as várias experiências práticas realizadas permitiram validar as propriedades desejadas e, consequentemente, a tese que fundamenta esta dissertação.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contemporary world is crowded of large, interdisciplinary, complex systems made of other systems, personnel, hardware, software, information, processes, and facilities. The Systems Engineering (SE) field proposes an integrated holistic approach to tackle these socio-technical systems that is crucial to take proper account of their multifaceted nature and numerous interrelationships, providing the means to enable their successful realization. Model-Based Systems Engineering (MBSE) is an emerging paradigm in the SE field and can be described as the formalized application of modelling principles, methods, languages, and tools to the entire lifecycle of those systems, enhancing communications and knowledge capture, shared understanding, improved design precision and integrity, better development traceability, and reduced development risks. This thesis is devoted to the application of the novel MBSE paradigm to the Urban Traffic & Environment domain. The proposed system, the GUILTE (Guiding Urban Intelligent Traffic & Environment), deals with a present-day real challenging problem “at the agenda” of world leaders, national governors, local authorities, research agencies, academia, and general public. The main purposes of the system are to provide an integrated development framework for the municipalities, and to support the (short-time and real-time) operations of the urban traffic through Intelligent Transportation Systems, highlighting two fundamental aspects: the evaluation of the related environmental impacts (in particular, the air pollution and the noise), and the dissemination of information to the citizens, endorsing their involvement and participation. These objectives are related with the high-level complex challenge of developing sustainable urban transportation networks. The development process of the GUILTE system is supported by a new methodology, the LITHE (Agile Systems Modelling Engineering), which aims to lightening the complexity and burdensome of the existing methodologies by emphasizing agile principles such as continuous communication, feedback, stakeholders involvement, short iterations and rapid response. These principles are accomplished through a universal and intuitive SE process, the SIMILAR process model (which was redefined at the light of the modern international standards), a lean MBSE method, and a coherent System Model developed through the benchmark graphical modeling languages SysML and OPDs/OPL. The main contributions of the work are, in their essence, models and can be settled as: a revised process model for the SE field, an agile methodology for MBSE development environments, a graphical tool to support the proposed methodology, and a System Model for the GUILTE system. The comprehensive literature reviews provided for the main scientific field of this research (SE/MBSE) and for the application domain (Traffic & Environment) can also be seen as a relevant contribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the application of optimal alarm systems to non linear time series models. The most common classes of models in the analysis of real-valued and integer-valued time series are described. The construction of optimal alarm systems is covered and its applications explored. Considering models with conditional heteroscedasticity, particular attention is given to the Fractionally Integrated Asymmetric Power ARCH, FIAPARCH(p; d; q) model and an optimal alarm system is implemented, following both classical and Bayesian methodologies. Taking into consideration the particular characteristics of the APARCH(p; q) representation for financial time series, the introduction of a possible counterpart for modelling time series of counts is proposed: the INteger-valued Asymmetric Power ARCH, INAPARCH(p; q). The probabilistic properties of the INAPARCH(1; 1) model are comprehensively studied, the conditional maximum likelihood (ML) estimation method is applied and the asymptotic properties of the conditional ML estimator are obtained. The final part of the work consists on the implementation of an optimal alarm system to the INAPARCH(1; 1) model. An application is presented to real data series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless communication technologies have become widely adopted, appearing in heterogeneous applications ranging from tracking victims, responders and equipments in disaster scenarios to machine health monitoring in networked manufacturing systems. Very often, applications demand a strictly bounded timing response, which, in distributed systems, is generally highly dependent on the performance of the underlying communication technology. These systems are said to have real-time timeliness requirements since data communication must be conducted within predefined temporal bounds, whose unfulfillment may compromise the correct behavior of the system and cause economic losses or endanger human lives. The potential adoption of wireless technologies for an increasingly broad range of application scenarios has made the operational requirements more complex and heterogeneous than before for wired technologies. On par with this trend, there is an increasing demand for the provision of cost-effective distributed systems with improved deployment, maintenance and adaptation features. These systems tend to require operational flexibility, which can only be ensured if the underlying communication technology provides both time and event triggered data transmission services while supporting on-line, on-the-fly parameter modification. Generally, wireless enabled applications have deployment requirements that can only be addressed through the use of batteries and/or energy harvesting mechanisms for power supply. These applications usually have stringent autonomy requirements and demand a small form factor, which hinders the use of large batteries. As the communication support may represent a significant part of the energy requirements of a station, the use of power-hungry technologies is not adequate. Hence, in such applications, low-range technologies have been widely adopted. In fact, although low range technologies provide smaller data rates, they spend just a fraction of the energy of their higher-power counterparts. The timeliness requirements of data communications, in general, can be met by ensuring the availability of the medium for any station initiating a transmission. In controlled (close) environments this can be guaranteed, as there is a strict regulation of which stations are installed in the area and for which purpose. Nevertheless, in open environments, this is hard to control because no a priori abstract knowledge is available of which stations and technologies may contend for the medium at any given instant. Hence, the support of wireless real-time communications in unmanaged scenarios is a highly challenging task. Wireless low-power technologies have been the focus of a large research effort, for example, in the Wireless Sensor Network domain. Although bringing extended autonomy to battery powered stations, such technologies are known to be negatively influenced by similar technologies contending for the medium and, especially, by technologies using higher power transmissions over the same frequency bands. A frequency band that is becoming increasingly crowded with competing technologies is the 2.4 GHz Industrial, Scientific and Medical band, encompassing, for example, Bluetooth and ZigBee, two lowpower communication standards which are the base of several real-time protocols. Although these technologies employ mechanisms to improve their coexistence, they are still vulnerable to transmissions from uncoordinated stations with similar technologies or to higher power technologies such as Wi- Fi, which hinders the support of wireless dependable real-time communications in open environments. The Wireless Flexible Time-Triggered Protocol (WFTT) is a master/multi-slave protocol that builds on the flexibility and timeliness provided by the FTT paradigm and on the deterministic medium capture and maintenance provided by the bandjacking technique. This dissertation presents the WFTT protocol and argues that it allows supporting wireless real-time communication services with high dependability requirements in open environments where multiple contention-based technologies may dispute the medium access. Besides, it claims that it is feasible to provide flexible and timely wireless communications at the same time in open environments. The WFTT protocol was inspired on the FTT paradigm, from which higher layer services such as, for example, admission control has been ported. After realizing that bandjacking was an effective technique to ensure the medium access and maintenance in open environments crowded with contention-based communication technologies, it was recognized that the mechanism could be used to devise a wireless medium access protocol that could bring the features offered by the FTT paradigm to the wireless domain. The performance of the WFTT protocol is reported in this dissertation with a description of the implemented devices, the test-bed and a discussion of the obtained results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.