945 resultados para Reactive plasmas
Resumo:
The global mid-ocean ridge system creates oceanic crust and lithosphere that covers more than two-thirds of the Earth. Basalts are volumetrically the most important rock type sampled at mid-ocean ridges. For this reason, our present understanding of upper mantle dynamics and the chemical evolution of the earth is strongly influenced by the study of mid-ocean ridge basalts (MORB). However, MORB are aggregates of polybarically generated small melt increments that can undergo a variety of physical and chemical processes during their ascent and consequently affect their derivative geochemical composition. Therefore, MORB do not represent “direct” windows to the underlying upper mantle. Abyssal peridotites, upper mantle rocks recovered from the ocean floor, are the residual complement to MORB melting and provide essential information on melt extraction from the upper mantle. In this study, abyssal peridotites are examined to address these overarching questions posed by previous studies of MORB: How are basaltic melts formed in the mantle, how are they extracted from the mantle and what physical and chemical processes control mantle melting? The number of studies on abyssal peridotites is small compared to those on basalts, in part because seafloor exposures of abyssal peridotites are relatively rare. For this reason, abyssal peridotite characteristics need to be considered in the context of subaerially exposed peridotites associated with ophiolites, orogenic peridotite bodies and basalt-hosted xenoliths. However, orogenic peridotite bodies are mainly associated with passive continental margins, most ophiolites are formed in supra-subduction zone settings, and peridotite xenoliths are often contaminated by their host magma. Therefore, studies of abyssal peridotites are essential to understanding the primary characteristics of the oceanic upper mantle free from the influence of continental rifting, subduction and tectonic emplacement processes. Nevertheless, numerous processes such as melt stagnation and cooling-induced, inter-mineral exchange can affect residual abyssal peridotite compositions after the cessation of melting. The aim of this study is to address these post-melting modifications of abyssal peridotites from a petrological-geochemical perspective. The samples in this study were dredged along the axis of the ultraslow-spreading Gakkel Ridge in the Arctic Ocean within the “Sparsely Magmatic Zone”, a 100 km ridge section where only mantle rocks are exposed. During two expeditions (ARK XVII-2 in 2001 and ARK XX-2 in 2004), exceptionally fresh peridotites were recovered. The boulders and cobbles collected cover a range of mantle rock compositions, with most characterized as plagioclase-free spinel peridotites or plagioclase- spinel peridotites. This thesis investigates melt stagnation and cooling processes in the upper mantle and is divided into two parts. The first part focuses on processes in the stability field of spinel peridotites (>10 kb) such as melt refertilization and cooling related trace element exchange, while the second part investigates processes in the stability field of plagioclase peridotites (< 10 kb) such as reactive melt migration and melt stagnation. The dissertation chapters are organized to follow the theoretical ascent of a mantle parcel upwelling beneath the location where the samples were collected.
Resumo:
Reactive halogen compounds are known to play an important role in a wide variety of atmospheric processes such as atmospheric oxidation capacity and coastal new particle formation. In this work, novel analytical approaches combining diffusion denuder/impinger sampling techniques with gas chromatographic–mass spectrometric (GC–MS) determination are developed to measure activated chlorine compounds (HOCl and Cl2), activated bromine compounds (HOBr, Br2, BrCl, and BrI), activated iodine compounds (HOI and ICl), and molecular iodine (I2). The denuder/GC–MS methods have been used to field measurements in the marine boundary layer (MBL). High mixing ratios (of the order of 100 ppt) of activated halogen compounds and I2 are observed in the coastal MBL in Ireland, which explains the ozone destruction observed. The emission of I2 is found to correlate inversely with tidal height and correlate positively with the levels of O3 in the surrounding air. In addition the release is found to be dominated by algae species compositions and biomass density, which proves the “hot-spot” hypothesis of atmospheric iodine chemistry. The observations of elevated I2 concentrations substantially support the existence of higher concentrations of littoral iodine oxides and thus the connection to the strong ultra-fine particle formation events in the coastal MBL.
Resumo:
Evidence accumulated in the last ten years has demonstrated that a large proportion of the mitochondrial respiratory chain complexes in a variety of organisms is arranged in supramolecular assemblies called supercomplexes or respirasomes. Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. Following this line of thought we have decided to directly investigate ROS production by Complex I under conditions in which the complex is arranged as a component of the supercomplex I1III2 or it is dissociated as an individual enzyme. The study has been addressed both in bovine heart mitochondrial membranes and in reconstituted proteoliposomes composed of complexes I and III in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. The results of this investigation provide experimental evidence that the production of ROS is strongly increased in either model; supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I . This is the first demonstration that dissociation of the supercomplex I1III2 in the mitochondrial membrane is a cause of oxidative stress from Complex I. Previous work in our laboratory demonstrated that lipid peroxidation can dissociate the supramolecular assemblies; thus, here we confirm that preliminary conclusion that primary causes of oxidative stress may perpetuate reactive oxygen species (ROS) generation by a vicious circle involving supercomplex dissociation as a major determinant.
Resumo:
Results reported in this Thesis contribute to the comprehension of the complicated world of “redox biology”. ROS regulate signalling pathways both in physiological responses and in pathogenesis and progression of diseases. In cancer cells, the increase in ROS generation from metabolic abnormalities and oncogenic signalling may trigger a redox adaptation response, leading to an up-regulation of antioxidant capacity in order to maintain the ROS level below the toxic threshold. Thus, cancer cells would be more dependent on the antioxidant system and more vulnerable to further oxidative stress induced by exogenous ROS-generating agents or compounds that inhibit the antioxidant system. Results here reported indicate that the development of new drugs targeting specific Nox isoforms, responsible for intracellular ROS generation, or AQP isoforms, involved in the transport of extracellular H2O2 toward intracellular targets, might be an interesting novel anti-leukaemia strategy. Furthermore, also the use of CSD peptide, which simulate the VEGFR-2 segregation into caveolae in the inactive form, might be a strategy to stop the cellular response to VEGF signalling. As above stated, in the understanding of the redox biology, it is also important to identify and distinguish the molecular effectors that maintain normal biological and physiological responses, such as agents that stimulate our adaptation systems and elevate our endogenous antioxidant defences or other protective systems. Data here reported indicate that the nutraceutical compound sulforaphane and the Klotho protein are able to stimulate the HO-1 and Prx-1 expression, as well as the GSH levels, confirming their antioxidant and protective role. Finally, results here reported demonstrated that Stevia extracts are involved in insulin regulated glucose metabolism, suggesting that the use of these compounds goes beyond their sweetening power and may also offer therapeutic benefits hence improving the quality of life.
Resumo:
Acute myeloid leukemia (AML) is a very aggressive cancer of the hematopoietic system. Chemotherapy and immunotherapeutical approaches including hematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) are the only curative options available. The beneficial graft-versus-leukemia (GVL) effect of cellular immunotherapy is mostly mediated by donor-derived CD8+ T lymphocytes that recognize minor histocompatibility antigens (mHags) and leukemia-associated antigens (LAAs) presented on the surface of AML blasts (Falkenburg et al. 2008; Kolb 2008). A main complication is graft-versus-host disease (GVHD) that can be induced when cytotoxic T lymphocytes (CTLs) recognize broadly expressed antigens. To reduce the risk of GVHD, specific allogeneic T-cell therapy inducing selective GVL responses could be an option (Barrett & Le Blanc 2010; Parmar et al. 2011; Smits et al. 2011). This requires efficient in vitro strategies to generate AML-reactive T cells with an early differentiation phenotype as well as vigorous effector functions and humanized mouse models to analyze the anti-leukemic potential of adoptively transferred T cells in vivo. In this study, AML-reactive CTL clones and oligoclonal T-cell lines could be reliably generated from the naive subset of healthy HLA-class I-identical donors by stimulation with primary AML blasts in mini-mixed-lymphocyte / leukemia cultures (MLLCs) in eight different patient / donor pairs. These CTLs were promising candidates for cellular immunotherapy because of their relatively early differentiation phenotype and strong proliferative and lytic capabilities. The addition of the common γ-chain cytokine IL-21 to the stimulation protocol enabled more precursors to develop into potent leukemia-reactive CTLs, presumably by its beneficial effects on cell survival and antigen-specific proliferation during the first weeks of cultures. It also strengthened the early-stage phenotype. Three long-term cultured CTLs exemplarily transferred into leukemia-engrafted immunodeficient NSG mice mediated a significant reduction of the leukemic burden after a single transfusion. These results demonstrate that CTL clones with reactivity to patient-derived AML blasts can be isolated from the naive compartment of healthy donors and show potent anti-leukemic effects in vivo. The herein described allo-MLLC approach with in vitro “programmed” naive CTL precursors independent of a HSCT setting is a valuable alternative to the conventional method of isolating in vivo primed donor CTLs out of patients after transplantation (Kloosterboer et al. 2004; Warren et al. 2010). This would make leukemia-reactive CTLs already available at the time point of HSCT, when residual leukemia disease is minimal and the chances for complete leukemia eradication are high. Furthermore, leukemia-reactive CTLs effectively expanded by this in vitro protocol can be used as screening populations to identify novel candidate LAAs and mHags for antigen-specific immunotherapy.
Resumo:
This dissertation will be focused on the characterization of an atmospheric pressure plasma jet source with an application oriented diagnostic approach and the description of processes supported by this plasma source. The plasma source investigated is a single electrode plasma jet. Schlieren images, optical emission spectra, temperature and heat flux profiles are analyzed to deeply investigate the fluid dynamic, the chemical composition and the thermal output of the plasma generated with a nanosecond-pulsed high voltage generator. The maximum temperature measured is about 45 °C and values close to the room temperature are reached 10 mm down the source outlet, ensuring the possibility to use the plasma jet for the treatment of thermosensitive materials, such as, for example, biological substrate or polymers. Electrospinning of polymeric solution allows the production of nanofibrous non-woven mats and the plasma pre-treatment of the solutions leads to the realization of defect free nanofibers. The use of the plasma jet allows the electrospinnability of a non-spinnable poly(L-lactic acid) (PLLA) solution, suitable for the production of biological scaffold for the wound dressing.
Resumo:
Approximately 25% of acute myeloid leukemias (AMLs) carry internal tandem duplications (ITD) of various lengths within the gene encoding the FMS-like tyrosine kinase receptor 3 (FLT3). Although varying duplication sites exist, most of these length mutations affect the protein´s juxtamembrane domain. FLT3-ITDs support leukemic transformation by constitutive phosphorylation resulting in uncontrolled activation, and their presence is associated with worse prognosis. As known form previous work, they represent leukemia- and patient-specific neoantigens that can be recognized by autologous AML-reactive CD8+ T cells (Graf et al., 2007; Graf et al., unpublished). Herein, in patient FL, diagnosed with FLT3-ITD+ AML and in first complete remission after induction chemotherapy, T cells against her leukemia´s individual FLT3-ITD were detected at a frequency up to 1.7x10-3 among peripheral blood CD8+ T lymphocytes. This rather high frequency suggested, that FLT3-ITD-reactive T cells had been expanded in vivo due to the induction of an anti-leukemia response.rnrnCell material from AML patients is limited, and the patients´ anti-leukemia T-cell repertoire might be skewed, e.g. due to complex previous leukemia-host interactions and chemotherapy. Therefore, allogeneic sources, i.e. buffy coats (BCs) from health donors and umbilical cord blood (UCB) donations, were exploited for the presence and the expansion of FLT3-ITD-reactive T-cell populations. BC- and UCB-derived CD8+ T cells, were distributed at 105 cells per well on microtiter plates and, were stimulated with antigen-presenting cells (APCs) transfected with in vitro-transcribed mRNA (IVT-mRNA) encoding selected FTL3-ITDs. APCs were autologous CD8- blood mononuclear cells, monocytes or FastDCs.rnrnBuffy coat lymphocytes from 19 healthy individuals were analyzed for CD8+ T-cell reactivity against three immunogenic FLT3-ITDs previously identified in patients VE, IN and QQ and designated as VE_, IN_ and QQ_FLT3-ITD, respectively. These healthy donors carried at least one of the HLA I alleles known to present an ITD-derived peptide from one of these FLT3-ITDs. Reactivities against single ITDs were observed in 8/19 donors. In 4 donors the frequencies of ITD-reactive T cells were determined and were estimated to be in the range of 1.25x10-6 to 2.83x10-7 CD8+ T cells. These frequencies were 1,000- to 10,000-fold lower than the frequency of autologous FLT3-ITD-reactive T cells observed in patient FL. Restricting HLA I molecules were identified in two donors. In one of them, the recognition of VE_FLT3-ITD was found to be restricted by HLA-C*07:02, which is different from the HLA allele restricting the anti-ITD T cells of patient VE. In another donor, the recognition of IN_FLT3-ITD was restricted by HLA-B*35:01, which also had been observed in patient IN (Graf et al., unpublished). By gradual 3´-fragmentation of the IN_FLT3-ITD cDNA, the 10-mer peptide CPSDNEYFYV was identified as the target of allogeneic T cells against IN_FLT3-ITD. rnLymphocytes in umbilical cord blood predominantly exhibit a naïve phenotype. Seven UCB donations were analyzed for T-cell responses against the FLT3-ITDs of patients VE, IN, QQ, JC and FL irrespective of their HLA phenotype. ITD-reactive responses against all stimulatory FLT3-ITDs were observed in 5/7 UCB donations. The frequencies of T cells against single FLT3-ITDs in CD8+ lymphocytes were estimated to be in the range of 1.8x10-5 to 3.6x10-6, which is nearly 15-fold higher than the frequencies observed in BCs. Restricting HLA I molecules were identified in 4 of these 5 positive UCB donations. They were mostly different from those observed in the respective patients. But in one UCB donation T cells against the JC_FLT3-ITD had exactly the same peptide specificity and HLA restriction as seen before in patient JC (Graf et al., 2007). Analyses of UCB responder lymphocytes led to the identification of the 10-mer peptide YESDNEYFYV, encoded by FL_FLT3-ITD, that was recognized in association with the frequent allele HLA-A*02:01. This peptide was able to stimulate and enrich ITD-reactive T cells from UCB lymphocytes in vitro. Peptide responders not only recognized the peptide, but also COS-7 cells co-transfected with FL_FLT3-ITD and HLA-A*02:01.rnrnIn conclusion, T cells against AML- and individual-specific FLT3-ITDs were successfully generated not only from patient-derived blood, but also from allogeneic sources. Thereby, ITD-reactive T cells were detected more readily and at higher frequencies in umbilical cord blood than in buffy coat lymphocytes. It occurred that peptide specificity and HLA restriction of allogeneic, ITD-reactive T cells were identical to autologous patient-derived T cells. As shown herein, allogeneic, FLT3-ITD-reactive T cells can be used for the identification of FLT3-ITD-encoded peptides, e.g. for future therapeutic vaccination studies. In addition, these T cells or their receptors can be applied to adoptive transfer.
Resumo:
Bei stammzelltransplantierten Patienten, die ein Rezidiv ihrer Leukämie erleiden, kann eine Donor-Lymphozyten-Infusion (DLI) dauerhafte vollständige Leukämieremissionen induzieren. T-Zellen in der DLI vermitteln sowohl den potentiell kurativen Graft-versus-Leukaemia (GVL) Effekt, als auch die potentiell lebensbedrohliche Graft-versus-Host Disease (GVHD). Hingegen könnte die Infusion von leukämiereaktiven T-Zellen einen selektiven GVL Effekt und einen Langzeitschutz vor Rezidiven durch eine spezifisch gegen die Leukämie gerichtete Immunantwort und Immunität vermitteln. Unsere Arbeitsgruppe hat Protokolle zur in vitro Generierung leukämiereaktiver T-Zellen entwickelt, die hohe zytotoxische Aktivität gegen akute myeloische Leukämie-Blasten (AML) bei minimaler Reaktion auf mögliche GVHD Zielstrukturen zeigen. Für die klinische Anwendung sind diese Protokolle jedoch zu aufwändig, wobei vor allem eine erhebliche Verkürzung der Kulturzeit auf wenige Wochen erforderlich ist. Diese Verkürzung der in vitro Kulturzeit könnte das Wachstum von T-Zellen vom central memory oder frühen effector memory Phänotyp fördern, für die eine bessere in vivo Effektorfunktion und längere Persistenz im Rezipienten verglichen mit T-Zellen aus Langzeitkultur gezeigt werden konnte. Der Aktivierungsmarker und Kostimulations-Rezeptor CD137 kann zur Erkennung und Isolation antigenspezifischer T-Zellen genutzt werden, ohne dass dafür das von den T-Zellen erkannte Peptidepitop bekannt sein muss. Eine CD137-vermittelte Anreicherung mit Hilfe von clinical grade Materialien könnte verwendet werden, um DLI-Produkte mit leukämiespezifischen T-Zellen herzustellen, die sich sowohl durch eine effizientere T-Zell Generierung durch in vitro Selektion und Kostimulation, als auch durch eine verbesserte Spezifität des T-Zell-Produkts auszeichnen. Lymphozyten-Leukämie Cokulturen (mixed lymphocyte leukaemia cultures) wurden mit CD8 T-Zellen gesunder Spender und HLA-identischen oder einzel-HLA-mismatch AML-Blasten angesetzt und wöchentlich restimuliert. Nach zwei Wochen wurden die T-Zellen 12 Stunden nach Restimulation über den Marker CD137 positiv isoliert und anschließend separat weiterkultiviert. Die isolierten Fraktionen und unseparierten Kontrollen wurden im ELISPOT-Assay und im Chrom-Freisetzungstest an Tag 5 nach der Restimulation getestet. Es wurden keine konsistent nachweisbaren Vorteile im Hinblick auf Wachstum und Funktion der isolierten CD137-positiv Fraktion im Vergleich zur unseparierten Kontrolle gefunden. Verschiedene Isolationsmethoden, Patient-Spender-Systeme, Methoden zur Restimulation, Temperaturbedingungen, Zytokinkombinationen und Methoden der Zytokinzugabe sowie zusätzliche Feeder-Zellen oder AML-Blasten konnten Wachstum, funktionelle Daten und die deutlichen Zellverluste während der Isolation nicht entscheidend beeinflussen. Vitalfärbungen zeigten, dass aktivierungsinduzierter Zelltod CD137-positiver Zellen zu diesen Ergebnissen beitragen könnte. Im Gegensatz zur Stimulation mit AML-Blasten wurden erfolgreiche CD137-Anreicherungen für peptidstimulierte T-Zellen publiziert. Unterschiedliche CD137-Expressionskinetiken, aktivierungsinduzierter Zelltod und regulatorische T-Zellen sind mögliche Faktoren aufgrund derer die CD137-Anreicherung in diesem spezifischen Kontext ungeeinet sein könnte. Der stimulatorische Effekt eines CD137-Signals auf AML-reaktive CD8 T-Zellen wurde mit Hilfe von CD3/CD28 und CD3/CD28/CD137 Antikörper-beschichteten magnetischen beads untersucht. Für Nierenzellkarzinom-reaktive T-Zellen war die Stimulation mit CD3/CD28/CD137 beads genauso effektiv wie mit Tumorzellen und effektiver als mit CD3/CD28 beads. Beide Arten von beads waren für eine Stimulation während der ersten Wochen der Zellkultur geeignet, sodass ein zusätzliches CD137-Signal für die länger anhaltende Expansion tumorreaktiver T-Zellen zur klinischen Anwendung nützlich sein könnte. Die bead-Expansion veränderte die IFN-Sekretion im ELISPOT nicht, aber verursachte eine mäßige Verschlechterung der Zytotoxizität im Chrom-Freisetzungstest. Im Gegensatz dazu zeigten bei AML-reaktiven T-Zellen beide Arten von beads einen nicht apoptosevermittelten, dosisabhängigen zellschädigenden Effekt, der zu einer raschen Abnahme der Zellzahl in Kulturen mit beads führte. Unerwünschte Effekte auf die T-Zell-Funktionalität durch bead-Stimulation sind in der Literatur beschrieben, dennoch gibt es aktuell keine Veröffentlichungen, die eine fundierte Erklärung für den Effekt auf AML-reaktive T-Zellen bieten könnten. Abgesehen von Literaturdaten, die darauf hindeuten, dass CD137 ein vielversprechendes Kandidatenmolekül für die Anreicherung und Expansion von AML-reaktiven T-Zellen sein könnte, zeigen die eigenen Daten sowohl zur CD137-Isolation als auch zur bead-Stimulation, dass für diese spezielle Anwendung CD137 ein ungeeigneter Aktivierungsmarker und Kostimulations-Ligand ist.
Resumo:
Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patients’ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.
Resumo:
After almost 10 years from “The Free Lunch Is Over” article, where the need to parallelize programs started to be a real and mainstream issue, a lot of stuffs did happened: • Processor manufacturers are reaching the physical limits with most of their approaches to boosting CPU performance, and are instead turning to hyperthreading and multicore architectures; • Applications are increasingly need to support concurrency; • Programming languages and systems are increasingly forced to deal well with concurrency. This thesis is an attempt to propose an overview of a paradigm that aims to properly abstract the problem of propagating data changes: Reactive Programming (RP). This paradigm proposes an asynchronous non-blocking approach to concurrency and computations, abstracting from the low-level concurrency mechanisms.
Resumo:
L'obiettivo di questa tesi è analizzare e testare la programmazione reattiva, paradigma di programmazione particolarmente adatto per lo sviluppo di applicazioni altamente interattive. La progettazione di sistemi reattivi implica necessariamente l'utilizzo di codice asincrono e la programmazione reattiva (RP) offre al programmatore semplici meccanismi per gestirlo. In questa tesi, la programmazione reattiva è stata utilizzata e valutata mediante la realizzazione di un progetto real-world chiamato AvvocaTimer. Verrà affrontata la progettazione, implementazione e collaudo di una parte del sistema attraverso l'approccio reattivo e, successivamente, confrontata con la prima versione, realizzata con i metodi attualmente usati per gestire codice asincrono, per analizzare vantaggi e/o svantaggi derivanti dall'utilizzo del nuovo paradigma.
Resumo:
To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required.
Resumo:
QUESTIONS UNDER STUDY / PRINCIPLES: The value of postoperative pro-calcitonin (PCT) in the follow-up of patients with localised infections in the orthopaedic domain is unknown.
Resumo:
Smoking not only increases the risk that coronary heart disease will develop but also morbidity and mortality in patients with known coronary atherosclerosis and after coronary artery bypass grafting. Excessive generation of reactive oxygen species (ROS) has been implicated as the final common pathway for the development of endothelial dysfunction in various cardiovascular risk factors. This study assessed the influence of smoking on two different human arteries routinely used as coronary artery bypass graft conduits.