939 resultados para Polyunsaturated fatty acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have demonstrated that long chain fatty acids influence fibroblast function at sub-lethal concentrations. This study is the first to assess the effects of oleic, linoleic or palmitic acids on protein expression of fibroblasts, as determined by standard proteomic techniques. The fatty acids were not cytotoxic at the concentration used in this work as assessed by membrane integrity, DNA fragmentation and the MTT assay but significantly increased cell proliferation. Subsequently, a proteomic analysis was performed using two dimensional difference gel electrophoresis (2D-DIGE) and MS based identification. Cells treated with 50 μM oleic, linoleic or palmitic acid for 24 h were associated with 24, 22, 16 spots differentially expressed, respectively. Among the identified proteins, α-enolase and far upstream element binding protein 1 (FBP-1) are of importance due to their function in fibroblast-associated diseases. However, modulation of α-enolase and FBP-1 expression by fatty acids was not validated by the Western blot technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatile fatty acids (VFA) absorption and metabolic capacity of rumen and omasum were compared, in vitro. Fragments of rumen wall and omasum laminae were taken from eight adult crossbred bovines. An isolated fragment of the mucosa was fitted in a tissue diffusion chamber. Valeric acid and CrEDTA were added to ruminal fluid and placed on the mucosal side and buffer solution was placed on the serosal side. Fractional absorption rates were measured by exponential VFA:Cr ratio decay over time. Metabolism rate was determined as the difference between VFA absorbed and VFA which appeared on the serosal side over time. Mitotic index was higher in omasum (0.52%) than in rumen epithelium (0.28%). VFA fractional absorption rate was higher in omasum (4.6%/h.cm²) than in rumen (0.4%/h.cm²). Acetate, propionate, butyrate, and valerate showed similar fractional absorption rates in both fragments. Percentage of metabolized acetate and propionate was lower than butyrate and valerate in both stomach compartments. In the rumen, individual VFA metabolism rates were similar (mean of 7.7 , but in the omasum, valerate (90.0 was more metabolized than butyrate (59.6 propionate (69.8 and acetate (51.7 . Correlation between VFA metabolism and mitotic index was positive in the rumen and in the omasum. In conclusion, VFA metabolism and absorption potential per surface of the omasum is higher than that of the rumen. Variations on rumen and omasum absorption capacities occur in the same way, and there are indications that factors capable of stimulating rumen wall proliferation are similarly capable of stimulating omasum walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Máster Oficial en Cultivos Marinos. VI Máster Internacional en Acuicultura. Trabajo presentado como requisito parcial para la obtención del Título de Máster Oficial en Cultivos Marinos, otorgado por la Universidad de Las Palmas de Gran Canaria (ULPGC), el Instituto Canario de Ciencias Marinas (ICCM), y el Centro Internacional de Altos Estudios Agronómicos Mediterráneos de Zaragoza (CIHEAM)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Most marine fish larvae require high amounts of n-3 HUFA (highly unsaturated fatty acids) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Watanabe, 1982; Izquierdo, 1996). Fish larvae tissue lipids are also very high in n-3 HUFA, what implies a higher risk of peroxidation (Sargent et al. 1999) and cellular damage (Kanazawa, 1991), requiring then antioxidants to protect them intra- and extra-cellularly from free radical compounds. Vitamin E (Vit E) functions as a chain breaking antioxidant, reacting with the lipid peroxide radical produced and preventing the further reaction with a new PUFA. Hence their requirements are related with the dietary and tissue PUFA contents. The objective of the present study was to determine the effect of dietary Vit E on gilthead sea bream and sea bass survival, growth and stress, at different n-3 HUFA levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory bowel diseases are associated with increased risk of developing colitis-associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid-free fatty acid (EPA-FFA) reduces polyps formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA-FFA are unknown in CAC. We tested the effectiveness of substituting EPA-FFA, for other dietary fats, in preventing inflammation and cancer in the AOM-DSS model of CAC. The AOM-DSS protocols were designed to evaluate the effect of EPA-FFA on both initiation and promotion of carcinogenesis. We found that EPA-FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA-FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β-catenin expression, whilst it increased apoptosis. In both arms, EPA-FFA treatment led to increased membrane switch from ω-6 to ω-3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA-FFA treated arms and AOM-DSS controls. Importantly, we found that EPA-FFA treatment restored the loss of Notch signaling found in the AOM-DSS control, resulted in the enrichment of Lactobacillus species in the gut microbiota and led to tumor suppressor miR34-a induction. In conclusion, our data suggest that EPA-FFA is an effective chemopreventive agent in CAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension is the most prevalent form of cardiovascular disease (CVD) in the world, and is known to increase the risk for developing other diseases. Recently, the American Heart Association introduced a new classification of blood pressure, prehypertension (PHT). The criteria for PHT include a systolic of 120-139 mmHg and/or a diastolic blood pressure of 80-89 mmHg. It has been observed that individuals with PHT have a higher risk of developing hypertension later in life. Therefore, it is important to understand the mechanisms contributing to PHT in order to possibly prevent hypertension. Omega-3 fatty acids found in fish oils have been suggested as a means of lowering blood pressure. However, little is known on the effects of fish oil in PHT humans. Therefore we conducted two studies. In Study 1 we investigated PHT and normotensive (NT) individuals during a mental stress task. Mental stress is known to contribute to the development of hypertension. In Study 2 PHT and NT subjects were placed in an eight week double-blind placebo controlled study in which subjects consumed 9g/day of either fish oil or placebo (olive oil) in addition to their regular diets. Subjects were tested during a resting baseline (seated and supine), 5 minutes of a mental stress task, and 5 minutes of recovery both pre and post supplementation. We measured arterial pressure (AP), heart rate (HR), muscle sympathetic nerve activity (MSNA), and forearm and calf vascular responses. In Study 1 PHT demonstrated augmented AP and blunted vasodilation during mental stress, but MSNA did not change. In Study 2, fish oil did not directly influence blood pressure, MSNA or vascular responses to mental stress. However, it became clear that fish oil had an effect on some but not all subjects (both PHT and NT). Specifically, subjects who experienced a reduced blood pressure response to fish oil also demonstrated a decrease in MSNA and HR during mental stress. Collectively, the investigations in this dissertation had several novel findings. First, PHT individuals demonstrate an augmented pressor and blunted vascular response to mental stress, a response that may be contributing to the development of hypertension. Second, fish oil does not consistently lower resting blood pressure, but the interindividual responses may be related to MSNA. Third, fish oil attenuated the heart rate and MSNA responses and to mental stress in both PHT and NT. In conclusion, we found that there are both similarities and differences in the way PHT and NT individuals respond to mental stress and fish oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cows encounter a state of negative energy balance during the periparturient period, which may lead to metabolic disorders and impaired fertility. The aim of this study was to assess the potential of milk fatty acids as diagnostic tools of detrimental levels of blood plasma nonesterified fatty acids (NEFA), defined as NEFA concentrations beyond 0.6 mmol/L, in a data set of 92 early lactating cows fed a glucogenic or lipogenic diet and subjected to 0-, 30-, or 60-d dry period before parturition. Milk was collected in wk 2, 3, 4, and 8 (n = 368) and blood was sampled weekly from wk 2 to 8 after parturition. Milk was analyzed for milk fatty acids and blood plasma for NEFA. Data were classified as "at risk of detrimental blood plasma NEFA" (NEFA ≥ 0.6 mmol/L) and "not at risk of detrimental blood plasma NEFA" (NEFA <0.6 mmol/L). Concentrations of 45 milk fatty acids and milk fat C18:1 cis-9-to-C15:0 ratio were subjected to a discriminant analysis. Milk fat C18:1 cis-9 revealed the most discriminating variable to identify detrimental blood plasma NEFA. A false positive rate of 10% allowed us to diagnose 46% of the detrimental blood plasma NEFA cases based on a milk fat C18:1 cis-9 concentration of at least 230 g/kg of milk fatty acids. Additionally, it was assessed whether the milk fat C18:1 cis-9 concentrations of wk 2 could be used as an early warning for detrimental blood plasma NEFA risk during the first 8 wk in lactation. Cows with at least 240 g/kg of C18:1 cis-9 in milk fat had about 50% chance to encounter blood plasma NEFA values of 0.6 mmol/L or more during the first 8 wk of lactation, with a false positive rate of 11.4%. Profit simulations were based on costs for cows suffering from detrimental blood plasma NEFA, and costs for preventive treatment based on daily dosing of propylene glycol for 3 wk. Given the relatively low incidence rate (8% of all observations), continuous monitoring of milk fatty acids during the first 8 wk of lactation to diagnose detrimental blood plasma NEFA does not seem cost effective. On the contrary, milk fat C18:1 cis-9 of the second lactation week could be an early warning of cows at risk of detrimental blood NEFA. In this case, selective treatment may be cost effective.