Elevated tissue omega-3 fatty acid status prevents age-related glucose intolerance in fat-1 transgenic mice
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
17/03/2014
17/03/2014
01/02/2014
|
Resumo |
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases Sansun Life Sciences Fortune Education Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
BBA - Biochimica et Biophysica Acta, Amsterdam, v.1842, n.2, p.186-191, 2014 http://www.producao.usp.br/handle/BDPI/44162 10.1016/j.bbadis.2013.10.017 |
Idioma(s) |
eng |
Publicador |
Elsevier Pub. Co. Amsterdam |
Relação |
BBA - Biochimica et Biophysica Acta |
Direitos |
restrictedAccess Elsevier B.V. |
Palavras-Chave | #Glucose homeostasis #Aging #Omega-3 fatty acid #Lipogenesis #Gluconeogenesis #Inflammation #Ômega 3 #Envelhecimento #Inflamação #Ácidos graxos #Glicose |
Tipo |
article original article publishedVersion |