904 resultados para MICROARRAY
Resumo:
Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.
Resumo:
Aquaporin-4 (AQP4) has recently been implicated in the pathogenesis of neuromyelitis optica(NMO) where it has been identifed as the first defined autoantigen pertinent to an infammatory demyelinating disorder of the human CNS. Furthermore, a recent case report has shown a lack of AQP4 expression in the spinal cord lesions of NMO. However, the pattern of AQP4 expression in multiple sclerosis (MS) tissues has not been well-defned. In the present investigation we have confirmed a lack of expression of AQP4 in optic and spinal cord lesions in NMO which contrasted sharply with the increased levels of AQP4 expression seen in MS lesions. Furthermore a detailed immunohistochemical and semi-quantitative analysis is used to describe the expression pattern of AQP4 on well-characterized tissue microarray samples of MS and control white matter. Anatomically AQP4 was more highly expressed in all categories of MS tissue compared to normal control tissues with the most abundant expression in active lesions. Within active lesions AQP4 expression was significantly correlated with expression of the pro-infammatory cytokine osteopontin. At the cellular level dual-labelling immunofluoresence demonstrated that increased expression of AQP4 was most pronounced at the astrocytic endfeet but was also associated with the cell bodies of astrocytes in the tissue parenchyma. The finding of increased AQP4 expression in MS lesions in contrast to the lack of expression in NMO lesions may suggest different mechanisms of initiation and progression between the two disease states.
Resumo:
Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.
Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.
Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).
Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.
Resumo:
Hypoxia confers resistance to common cancer therapies, however, it has also has been shown to result in genetic alterations which may allow a survival advantage and increase the tumorigenic properties of cancer cells. Additionally, it may exert a selection pressure, allowing expansion of tumor cells with a more aggressive phenotype. To further assess the role of hypoxia in malignant progression in prostate cancer we exposed human androgen dependent prostate cancer cells (LNCaP) to cycles of chronic hypoxia and isolated a subline, LNCaP-H1. This article describes the partial characterization of this cell line. The LNCaP-H1 subline showed altered growth characteristics and exhibited androgen independent growth both in vitro and in vivo. Furthermore, these cells were resistant to mitochondrial-mediated apoptosis, probably since the endogenous levels of Bax was lower and Bcl-2 higher than in the parental LNCaP cells. Microarray analysis revealed that a complex array of pathways had differential gene expression between the 2 cell lines, with LNCaP-H1 cells exhibiting a genetic profile which suggests that they may be more likely metastasize to distant organs, especially bone. This was supported by an in vitro invasion assay, and an in vivo metastasis study. This study shows that hypoxia can select for androgen independent prostate cancer cells which have a survival advantage and are more likely to invade and metastasize.
Resumo:
BACKGROUND: MicroRNAs (miRNAs) are oligoribonucleotides with an important role in regulation of gene expression at the level of translation. Despite imperfect target complementarity, they can also significantly reduce mRNA levels. The validity of miRNA target gene predictions is difficult to assess at the protein level. We sought, therefore, to determine whether a general lowering of predicted target gene mRNA expression by endogenous miRNAs was detectable within microarray gene expression profiles. RESULTS: The target gene sets predicted for each miRNA were mapped onto known gene expression data from a range of tissues. Whether considering mean absolute target gene expression, rank sum tests or 'ranked ratios', many miRNAs with significantly reduced target gene expression corresponded to those known to be expressed in the cognate tissue. Expression levels of miRNAs with reduced target mRNA levels were higher than those of miRNAs with no detectable effect on mRNA expression. Analysis of microarray data gathered after artificial perturbation of expression of a specific miRNA confirmed the predicted increase or decrease in influence of the altered miRNA upon mRNA levels. Strongest associations were observed with targets predicted by TargetScan. CONCLUSION: We have demonstrated that the effect of a miRNA on its target mRNAs' levels can be measured within a single gene expression profile. This emphasizes the extent of this mode of regulation in vivo and confirms that many of the predicted miRNA-mRNA interactions are correct. The success of this approach has revealed the vast potential for extracting information about miRNA function from gene expression profiles.
Resumo:
Formalin fixation and paraffin embedding (FFPE) is the most commonly used method worldwide for tissue storage. This method preserves the tissue integrity but causes extensive damage to nucleic acids stored within the tissue. As methods for measuring gene expression such as RT-PCR and microarray are adopted into clinical practice there is an increasing necessity to access the wealth of information locked in the Formalin fixation and paraffin embedding archives. This paper reviews the progress in this field and discusses the unique opportunities that exist for the application of these techniques in the development of personalized medicine.
Resumo:
Clustering analysis of data from DNA microarray hybridization studies is an essential task for identifying biologically relevant groups of genes. Attribute cluster algorithm (ACA) has provided an attractive way to group and select meaningful genes. However, ACA needs much prior knowledge about the genes to set the number of clusters. In practical applications, if the number of clusters is misspecified, the performance of the ACA will deteriorate rapidly. In fact, it is a very demanding to do that because of our little knowledge. We propose the Cooperative Competition Cluster Algorithm (CCCA) in this paper. In the algorithm, we assume that both cooperation and competition exist simultaneously between clusters in the process of clustering. By using this principle of Cooperative Competition, the number of clusters can be found in the process of clustering. Experimental results on a synthetic and gene expression data are demonstrated. The results show that CCCA can choose the number of clusters automatically and get excellent performance with respect to other competing methods.
Resumo:
Pseudomonas putida KT2440 is the only fully sequenced P. putida strain. Thus, for transcriptomics and proteomics studies with other P. putida strains, the P. putida KT2440 genomic database serves as standard reference. The utility of KT2440 whole-genome, high-density oligonucleotide microarrays for transcriptomics studies of other Pseudomonas strains was investigated. To this end, microarray hybridizations were performed with genomic DNAs of subcultures of P. putida KT2440 (DSM6125), the type strain (DSM291(T)), plasmid pWW0-containing KT2440-derivative strain mt-2 (DSM3931), the solvent-tolerant P. putida S12, and several other Pseudomonas strains. Depending on the strain tested, 22 to 99% of all genetic elements were identified in the genomic DNAs. The efficacy of these microarrays to study cellular function was determined for all strains included in the study. The vast majority of DSM6125 genes encoding proteins of primary metabolism and genes involved in the catabolism of aromatic compounds were identified in the genomic DNA of strain S12: a prerequisite for reliable transcriptomics analyses. The genomotypic comparisons between Pseudomonas strains were used to construct highly discriminative phylogenetic relationships. DSM6125 and DSM3931 were indistinguishable and clustered together with strain S12 in a separate group, distinct from DSM291(T). Pseudomonas monteilii (DSM14164) clustered well with P. putida strains.
Resumo:
A wide range of vectors is currently introducing a plethora of alien marine species into indigenous marine species assemblages. Over the past two decades, molecular studies of non-native seaweeds, including cryptic invaders, have successfully identified the species involved and their sources; we briefly review these studies. As yet, however, little research has been directed towards examining the genetic consequences of seaweed invasions. Here we provide an overview of seaweed invasions from a genetic perspective, focusing on invader species for which the greatest amount of information is available. We review invasion processes, and rationalize evolutionary and genetic consequences for the indigenous and invader species into two main groups: (1) changes in gene-pool composition, in population structure and allele frequencies; and (2) changes in genome organization at the species level through hybridization, and in individual gene expression profiles at the levels of expressed messenger RNA and the proteome (i.e., all proteins synthesized) and thus the phenotype. We draw on studies of better-known aquatic and terrestrial organisms to point the way forward in revealing the genetic consequences of seaweed invasions. We also highlight potential applications of more recent methodological and statistical approaches, such as microarray technology, assignment tests and mixed stock analysis.
Resumo:
Purpose: In an attempt to identify genes that are involved in resistance to SN38, the active metabolite of irinotecan (also known as CPT-11), we carried out DNA microarray profiling of matched HCT116 human colon cancer parental cell lines and SN38-resistant cell lines following treatment with SN38 over time.
Resumo:
PURPOSE: Advanced glycation end products (AGEs) accumulate during aging and have been observed in postmortem eyes within the retinal pigment epithelium (RPE), Bruch's membrane, and subcellular deposits (drusen). AGEs have been associated with age-related dysfunction of the RPE-in particular with development and progression to age-related macular degeneration (AMD). In the present study the impact of AGEs at the RPE-Bruch's membrane interface was evaluated, to establish how these modifications may contribute to age-related disease. METHODS: AGEs on Bruch's membrane were evaluated using immunohistochemistry. A clinically relevant in vitro model of substrate AGE accumulation was established to mimic Bruch's membrane ageing. Responses of ARPE-19 growing on AGE-modified basement membrane (AGE-BM) for 1 month were investigated by using a microarray approach and validated by quantitative (q)RT-PCR. In addition to identified AGE-related mRNA alterations, lysosomal enzyme activity and lipofuscin accumulation were also studied in ARPE-19 grown on AGE-BM. RESULTS: Autofluorescent and glycolaldehyde-derived AGEs were observed in clinical specimens on Bruch's membrane and choroidal extracellular matrix. In vitro analysis identified a range of dysregulated mRNAs in ARPE-19 exposed to AGE-BM. Altered ARPE-19 degradative enzyme mRNA expression was observed on exposure to AGE-BM. AGE-BM caused a significant reduction in cathepsin-D activity in ARPE-19 (P
Resumo:
Transcriptome analysis using microarray technology represents a powerful unbiased approach for delineating pathogenic mechanisms in disease. Here molecular mechanisms of renal tubulointerstitial fibrosis (TIF) were probed by monitoring changes in the renal transcriptome in a glomerular disease-dependent model of TIF ( adriamycin nephropathy) using Affymetrix (mu74av2) microarray coupled with sequential primary biological function-focused and secondary
Resumo:
Lung T lymphocytes are important in pulmonary immunity and inflammation. it has been difficult to study these cells due to contamination with other cell types, mainly alveolar macrophages. We have developed a novel method for isolating lung T cells from lung resection tissue, using a combination of approaches. Firstly the lung tissue was finely chopped and filtered through a nylon mesh. Lymphocytic cells were enriched by Percoll density centrifugation and the T cells purified using human CD3 microbeads, resulting in 90.5% +/- 1.9% (n = 11) pure lymphocytes. The T cell yield from the crude cell preparation was 10.8 +/- 2.1% and viability, calculated using propidium iodide (PI) staining and trypan blue, was typically over 95%. The purification process did not affect expression of CD69 or CD103, nor was there a difference in the proportion of CD4 and CD8 cells between the starting population and the purified cells. Microarray analysis and real time RT-PCR revealed upregulation of GAPDH and CXCR6 of the lung T cells as compared to blood-derived T cells. This technique highly enriches lung T cells to allow detailed investigation of the biology of these cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Differential gene expression in two established initiation and promotion skin carcinogenesis models during promotion and tumor formation was determined by microarray technology with the purpose of distinguishing the genes more associated with neoplastic transformation from those linked with proliferation and differentiation. The first model utilized dimethylbenz[a]anthracene initiation and 12-O-tetradecanoylphorbol 13-acetate (TPA) promotion in the FVB/N mouse, and the second TPA promotion of the Tg.Ac mouse, which is endogenously initiated by virtue of an activated Ha-ras transgene. Comparison of gene expression profiles across the two models identified genes whose altered expression was associated with papilloma formation rather than TPA-induced proliferation and differentiation. DMBA suppressed TPA-induced differentiation which allowed identification of those genes associated more specifically with differentiation rather than proliferation. EASE (Expression Analysis Systemic Explorer) indicated a correlation between muscle-associated genes and skin differentiation, whereas genes involved with protein biosynthesis were strongly correlated with proliferation. For verification the altered expression of selected genes were confirmed by RT-PCR; Carbonic anhydrase 2, Thioredoxin 1 and Glutathione S-transferase omega 1 associated with papilloma formation and Enolase 3, Cystatin 6 and Filaggrin associated with TPA-induced proliferation and differentiation. In situ analysis located the papillomas Glutathione S-transferase omega 1 expression to the proliferating areas of the papillomas. Thus we have identified profiles of differential gene expression associated with the tumorigenesis and promotion stages for skin carcinogenesis in the mouse.
Resumo:
Motivation: Many biomedical experiments are carried out by pooling individual biological samples. However, pooling samples can potentially hide biological variance and give false confidence concerning the data significance. In the context of microarray experiments for detecting differentially expressed genes, recent publications have addressed the problem of the efficiency of sample pooling, and some approximate formulas were provided for the power and sample size calculations. It is desirable to have exact formulas for these calculations and have the approximate results checked against the exact ones. We show that the difference between the approximate and the exact results can be large.