871 resultados para Interest operators
Resumo:
Urine is considered an ideal source of biomarkers, however in veterinary medicine a complete study on the urine proteome is still lacking. The present work aimed to apply proteomic techniques to the separation of the urine proteome in dogs, cats, horses, cows and some non-conventional species. High resolution electrophoresis (HRE) was also validated for the quantification of albuminuria in dogs and cats. In healthy cats, applying SDS-PAGE and 2DE coupled to mass spectrometry (MS), was produced a reference map of the urine proteome. Moreover, 13 differentially represented urine proteins were linked with CKD, suggesting uromodulin, cauxin, CFAD, Apo-H, RBP and CYSM as candidate biomarkers to be investigated further. In dogs, applying SDS-PAGE coupled to MS, was highlighted a specific pattern in healthy animals showing important differences in patients affected by leishmaniasis. In particular, uromodulin could be a putative biomarker of tubular damage while arginine esterase and low MW proteins needs to be investigated further. In cows, applying SDS-PAGE, were highlighted different patterns between heifers and cows showing some interesting changes during pregnancy. In particular, putative alpha-fetoprotein and b-PAP needs to be further investigated. In horses, applying SDS-PAGE, was produced a reference profile characterized by 13±4 protein bands and the most represented one was the putative uromodulin. Proteinuric horses showed the decrease of the putative uromodulin band and the appearance of 2 to 4 protein bands at higher MW and a greater variability in the range of MW between 49 and 17 kDa. In felids and giraffes was quantified proteinuria reporting the first data for UTP and UPC. Moreover, by means of SDS-PAGE, were highlighted species-specific electrophoretic patterns in big felids and giraffes.
Resumo:
This thesis is devoted to the study of Picard-Fuchs operators associated to one-parameter families of $n$-dimensional Calabi-Yau manifolds whose solutions are integrals of $(n,0)$-forms over locally constant $n$-cycles. Assuming additional conditions on these families, we describe algebraic properties of these operators which leads to the purely algebraic notion of operators of CY-type. rnMoreover, we present an explicit way to construct CY-type operators which have a linearly rigid monodromy tuple. Therefore, we first usernthe translation of the existence algorithm by N. Katz for rigid local systems to the level of tuples of matrices which was established by M. Dettweiler and S. Reiter. An appropriate translation to the level of differential operators yields families which contain operators of CY-type. rnConsidering additional operations, we are also able to construct special CY-type operators of degree four which have a non-linearly rigid monodromy tuple. This provides both previously known and new examples.
Resumo:
In this work we will discuss about a project started by the Emilia-Romagna Regional Government regarding the manage of the public transport. In particular we will perform a data mining analysis on the data-set of this project. After introducing the Weka software used to make our analysis, we will discover the most useful data mining techniques and algorithms; and we will show how these results can be used to violate the privacy of the same public transport operators. At the end, despite is off topic of this work, we will spend also a few words about how it's possible to prevent this kind of attack.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.
Resumo:
In der vorliegenden Arbeit wird die Variation abgeschlossener Unterräume eines Hilbertraumes untersucht, die mit isolierten Komponenten der Spektren von selbstadjungierten Operatoren unter beschränkten additiven Störungen assoziiert sind. Von besonderem Interesse ist hierbei die am wenigsten restriktive Bedingung an die Norm der Störung, die sicherstellt, dass die Differenz der zugehörigen orthogonalen Projektionen eine strikte Normkontraktion darstellt. Es wird ein Überblick über die bisher erzielten Resultate gegeben. Basierend auf einem Iterationsansatz wird eine allgemeine Schranke an die Variation der Unterräume für Störungen erzielt, die glatt von einem reellen Parameter abhängen. Durch Einführung eines Kopplungsparameters wird das Ergebnis auf den Fall additiver Störungen angewendet. Auf diese Weise werden zuvor bekannte Ergebnisse verbessert. Im Falle von additiven Störungen werden die Schranken an die Variation der Unterräume durch ein Optimierungsverfahren für die Stützstellen im Iterationsansatz weiter verschärft. Die zugehörigen Ergebnisse sind die besten, die bis zum jetzigen Zeitpunkt erzielt wurden.
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.
Resumo:
An alternative way is provided to define the discrete Pascal transform using difference operators to reveal the fundamental concept of the transform, in both one- and two-dimensional cases, which is extended to cover non-square two-dimensional applications. Efficient modularised implementations are proposed.
Resumo:
Conservation agriculture that focuses on soil recovery is both economically and environmentally sustainable. This lies in contrast with many of the current agricultural practices, which push for high production, which, in turn lead to over-depletion of the soil. Agricultural interest groups play a role in crafting farming policies with governmental officials. Therefore, my study examined three interest group types agribusinesses, farmer organizations, and environmental NGOs that seek to influence agricultural policy, specifically focusing on the federal farm bill, due to its large impact throughout the nation. The research in which data wasgathered through subject interviews, a literature review, and databases found that access to governmental officials affects the amount of influence a group can have. Access is contingent upon: 1) the number of networks (social, professional, and political), 2) amount of money spent through campaign contributions and lobbying expenditures, and 3) extent of business enterprises and subsidiaries. The evidence shows that there is a correlation between these variables and the extent of access. My research concludes that agribusiness interest groups have the most access to government officials, and thus have the greatest influence on agricultural policies. Because agribusinesses support subsidies of commodity-crops this indirectly impacts conservation agriculture, as the two programs compete in a zero-sum game for funding in the farm bills.
Resumo:
Networks are known to improve performance and create synergies. A research network can provide a significant advantage for all parties involved in research in surgery by systematically tracking the outcome of a huge number of patients over a long period of time. The aim of the present study was to investigate the experiences of surgeons with respect to research activities, to evaluate the opinions of surgeons with regard to the development of a national network for research in the field of surgery in Switzerland and to obtain data on how such a network should be designed.