948 resultados para Information Model
Resumo:
Trees are capable of portraying the semi-structured data which is common in web domain. Finding similarities between trees is mandatory for several applications that deal with semi-structured data. Existing similarity methods examine a pair of trees by comparing through nodes and paths of two trees, and find the similarity between them. However, these methods provide unfavorable results for unordered tree data and result in yielding NP-hard or MAX-SNP hard complexity. In this paper, we present a novel method that encodes a tree with an optimal traversing approach first, and then, utilizes it to model the tree with its equivalent matrix representation for finding similarity between unordered trees efficiently. Empirical analysis shows that the proposed method is able to achieve high accuracy even on the large data sets.
Resumo:
Background Currently the best prognostic index for operable non-small cell lung cancer (NSCLC) is the TNM staging system. Molecular biology holds the promise of predicting outcome for the individual patient and identifying novel therapeutic targets. Angiogenesis, matrix metalloproteinases (MMP)-2 and -9, and the erb/HER type I tyrosine kinase receptors are all implicated in the pathogenesis of NSCLC. Methods A retrospective analysis of 167 patients with resected stage I-IIIa NSCLC and >60 days postoperative survival with a minimum follow up of 2 years was undertaken. Immunohistochemical analysis was performed on paraffin embedded sections for the microvessel marker CD34, MMP-2 and MMP-9, EGFR, and c-erbB-2 to evaluate the relationships between and impact on survival of these molecular markers. Results Tumour cell MMP-9 (HR 1.91 (1.23-2.97)), a high microvessel count (HR 1.97 (1.28-3.03)), and stage (stage II HR 1.44 (0.87-2.40), stage IIIa HR 2.21 (1.31-3.74)) were independent prognostic factors. Patients with a high microvessel count and tumour cell MMP-9 expression had a worse outcome than cases with only one (HR 1.68 (1.04-2.73)) or neither (HR 4.43 (2.29-8.57)) of these markers. EGFR expression correlated with tumour cell MMP-9 expression (p<0.001). Immunoreactivity for both of these factors within the same tumour was associated with a poor prognosis (HR 2.22 (1.45-3.41)). Conclusion Angiogenesis, EGFR, and MMP-9 expression provide prognostic information independent of TNM stage, allowing a more accurate outcome prediction for the individual patient. The development of novel anti-angiogenic agents, EGFR targeted therapies, and MMP inhibitors suggests that target specific adjuvant treatments may become a therapeutic option in patients with resected NSCLC.
Resumo:
In recent years, there has been a significant increase in the popularity of ontological analysis of conceptual modelling techniques. To date, related research explores the ontological deficiencies of classical techniques such as ER or UML modelling, as well as business process modelling techniques such as ARIS or even Web Services standards such as BPEL4WS, BPML, ebXML, BPSS and WSCI. While the ontologies that form the basis of these analyses are reasonably mature, it is the actual process of an ontological analysis that still lacks rigour. The current procedure is prone to individual interpretations and is one reason for criticism of the entire ontological analysis. This paper presents a procedural model for ontological analysis based on the use of meta models, multiple coders and metrics. The model is supported by examples from various ontological analyses.
Resumo:
Enterprise Social Networks continue to be adopted by organisations looking to increase collaboration between employees, customers and industry partners. Offering a varied range of features and functionality, this technology can be distinguished by the underlying business models that providers of this software deploy. This study identifies and describes the different business models through an analysis of leading Enterprise Social Networks: Yammer, Chatter, SharePoint, Connections, Jive, Facebook and Twitter. A key contribution of this research is the identification of consumer and corporate models as extreme approaches. These findings align well with research on the adoption of Enterprise Social Networks that has discussed bottom-up and top-down approaches. Of specific interest are hybrid models that wrap a corporate model within a consumer model and may, therefore, provide synergies on both models. From a broader perspective, this can be seen as the merging of the corporate and consumer markets for IT products and services.
Resumo:
This paper proposes that critical realism can provide a useful theoretical foundation to study enterprise architecture (EA) evolution. Specifically it will investigate the practically relevant and academically challenging question of how EAs integrate the Service-oriented Architecture (SOA). Archer’s Morphogenetic theory is used as an analytical approach to distinguish the architectural conditions under which SOA is introduced, to study the relationships between these conditions and SOA introduction, and to reflect on EA evolution (elaborations) that then take place. The focus lies on the reasons why EA evolution takes place (or not) and what architectural changes happen. This paper uses the findings of a literature review to build an a-priori model informed by Archer’s theory to understand EA evolution in a field that often lacks a solid theoretical groundwork. The findings are threefold. First, EA can evolve on different levels (different integration outcomes). Second, the integration outcomes are classified into three levels: business architecture, information systems architecture and technology architecture. Third, the analytical separation using Archer’s theory is helpful in order to understand how these different integration outcomes are generated.
Resumo:
This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution
Resumo:
Process models are used to convey semantics about business operations that are to be supported by an information system. A wide variety of professionals is targeted to use such models, including people who have little modeling or domain expertise. We identify important user characteristics that influence the comprehension of process models. Through a free simulation experiment, we provide evidence that selected cognitive abilities, learning style, and learning strategy influence the development of process model comprehension. These insights draw attention to the importance of research that views process model comprehension as an emergent learning process rather than as an attribute of the models as objects. Based on our findings, we identify a set of organizational intervention strategies that can lead to more successful process modeling workshops.
Resumo:
Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.
Resumo:
This study explored the creation, dissemination and exchange of electronic word of mouth, in the form of product reviews and ratings of digital technology products. Based on 43 in-depth interviews and 500 responses to an online survey, it reveals a new communication model describing consumers' info-active and info-passive information search styles. The study delivers an in-depth understanding of consumers' attitudes towards current advertising tools and user-generated content, and points to new marketing techniques emerging in the online environment.
Resumo:
Since 2007 Kite Arts Education Program (KITE), based at Queensland Performing Arts Centre (QPAC), has been engaged in delivering a series of theatre-based experiences for children in low socio-economic primary schools in Queensland. KITE @ QPAC is an early childhood arts initiative of The Queensland Department of Education that is supported by and located at the Queensland Performing Arts Centre. KITE delivers relevant contemporary arts education experiences for Prep to Year 3 students and their teachers across Queensland. The theatre-based experiences form part of a three year artist-in-residency project titled Yonder that includes performances developed by the children with the support and leadership of Teacher Artists from KITE for their community and parents/carers in a peak community cultural institution. This paper provides an overview of the Yonder model and unpacks some challenges in activating the model for schools and cultural organisations.
Resumo:
Online business or Electronic Commerce (EC) is getting popular among customers today, as a result large number of product reviews have been posted online by the customers. This information is very valuable not only for prospective customers to make decision on buying product but also for companies to gather information of customers’ satisfaction about their products. Opinion mining is used to capture customer reviews and separated this review into subjective expressions (sentiment word) and objective expressions (no sentiment word). This paper proposes a novel, multi-dimensional model for opinion mining, which integrates customers’ characteristics and their opinion about any products. The model captures subjective expression from product reviews and transfers to fact table before representing in multi-dimensions named as customers, products, time and location. Data warehouse techniques such as OLAP and Data Cubes were used to analyze opinionated sentences. A comprehensive way to calculate customers’ orientation on products’ features and attributes are presented in this paper.
Resumo:
This paper presents the theory and practice of the Futures Action Model (FAM). FAM has been in development for over a decade, in a number of contexts and iterations. It is a creative methodology that uses a variety of concepts and tools to guide participants through the conception and modeling of enterprises, services, social innovations and projects in the context of emerging futures. It is used to generate strategic options that people can utilise to build opportunities for value creation as they move into the future. This paper details examples in its development, and provides theoretical and practical guidelines for educators and business facilitators to use the FAM system in their own workplaces.
Resumo:
Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.
Resumo:
While social engineering represents a real and ominous threat to many organizations, companies, governments, and individuals, social networking sites (SNSs), have been identified as among the most common means of social engineering attacks. Owing to factors that reduce the ability of users to detect social engineering tricks and increase the ability of attackers to launch them, SNSs seem to be perfect breeding ground for exploiting the vulnerabilities of people, and the weakest link in security. This work will contribute to the knowledge of social engineering by identifying different entities and subentities that affect social engineering based attacks in SNSs. Moreover, this paper includes an intensive and comprehensive overview of different aspects of social engineering threats in SNSs.
Resumo:
Many mature term-based or pattern-based approaches have been used in the field of information filtering to generate users’ information needs from a collection of documents. A fundamental assumption for these approaches is that the documents in the collection are all about one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, and this has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering has not been so well explored. Patterns are always thought to be more discriminative than single terms for describing documents. However, the enormous amount of discovered patterns hinder them from being effectively and efficiently used in real applications, therefore, selection of the most discriminative and representative patterns from the huge amount of discovered patterns becomes crucial. To deal with the above mentioned limitations and problems, in this paper, a novel information filtering model, Maximum matched Pattern-based Topic Model (MPBTM), is proposed. The main distinctive features of the proposed model include: (1) user information needs are generated in terms of multiple topics; (2) each topic is represented by patterns; (3) patterns are generated from topic models and are organized in terms of their statistical and taxonomic features, and; (4) the most discriminative and representative patterns, called Maximum Matched Patterns, are proposed to estimate the document relevance to the user’s information needs in order to filter out irrelevant documents. Extensive experiments are conducted to evaluate the effectiveness of the proposed model by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models