920 resultados para Human behaviour analysis
Resumo:
OBJECTIVE: Endostatin is a potent endogenous inhibitor of angiogenesis. It is derived from the proteolytic cleavage of collagen XVIII, which is encoded by the COL18A1 gene. A polymorphic COL18A1 allele encoding the functional polymorphism p.D104N impairs the activity of endostatin, resulting in a decreased ability to inhibit angiogenesis. This polymorphism has been previously analyzed in many types of cancer and has been considered a phenotype modulator in some benign and malignant tumors. However, these data are controversial, and different results have been reported for the same tumor types, such as prostate and breast cancer. The purpose of this study was to genotype the p.D104N variant in a cohort of pediatric and adult patients with adrenocortical tumors and to determine its possible association with the biological behavior of adrenocortical tumors. METHODS: DNA samples were obtained from 38 pediatric and 56 adult patients (0.6-75 yrs) with adrenocortical tumors. The DNA samples were obtained from peripheral blood, frozen tissue or paraffin-embedded tumor blocks when blood samples or fresh frozen tissue samples were unavailable. Restriction fragment length polymorphism analysis was used to genotype the patients and 150 controls. The potential associations of the p.D104N polymorphism with clinical and histopathological features and oncologic outcome (age of onset, tumor size, malignant tumor behavior, and clinical syndrome) were analyzed. RESULTS: Both the patient group and the control group were in Hardy-Weinberg equilibrium. The frequencies of the p.D104N polymorphism in the patient group were 81.9% (DD), 15.9% (DN) and 2.2% (NN). In the controls, these frequencies were 80.6%, 17.3% and 2.0%, respectively. We did not observe any association of this variant with clinical or histopathological features or oncologic outcome in our cohort of pediatric and adult patients with adrenocortical tumors.
Resumo:
Objectives: Considering the enamel chemical structure, especially carbonate band, which has a major role in the caries prevention, the objective of the present study was to assess the chemical alterations on the enamel irradiated with CO2 laser by means of FTIR spectroscopy and SEM analysis. Design: The enamel surfaces were analysed on a spectrometer for acquisition of the absorption spectrum relative to the chemical composition of the control sample. The irradiation was conducted with a 10.6-mu m CO2 laser (0.55 W, 660 W/cm(2)). The carbonate absorption band at 1600-1291 cm(-1) as well as the water absorption band at 3793-2652 cm(-1) was measured in each sample after the irradiation. The water band was measured again 24-h after the irradiation. The band area of each chemical compound was delimited, the background was subtracted, and the area under each band was integrated. Each area was normalized by the phosphate band (1190-702 cm(-1)). Results: There was a statistically significant decrease (p < 0.05) in the water content after irradiation (control: 0.184 +/- 0.04; irradiated: 0.078 +/- 0.026), which increased again after rehydration (0.145 +/- 0.038). The carbonate/phosphate ratio was measured initially (0.112 +/- 0.029) and its reduction after irradiation indicated the carbonate loss (0.088 +/- 0.014) (p < 0.05). Conclusion: The 10.6-mu m CO2 laser irradiation diminishes the carbonate and water contents in the enamel after irradiation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD) tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP) and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA) at its C-terminus. The tagged protein demonstrated an important modulation of its expression.
Resumo:
Introduction: Wound healing process involves the activation of extracellular matrix components, remodeling enzymes, cellular adhesion molecules, growth factors, cytokines and chemokines genes. However, the molecular patterns underlying the healing process periapical environment remain unclear. Here we hypothesized that endodontic infection might result in an imbalance in the expression of wound healing genes involved in the pathogenesis of periapical lesions. Furthermore, we suggest that differential expression of wound healing markers in active and latent granulomas could account for different clinical outcomes for such lesions. Methods: Study samples consisted of 93 periapical granulomas collected after endodontic surgeries and 24 healthy periodontal ligament tissues collected from premolars extracted for orthodontic purposes as control samples. Of these, 10 periapical granulomas and 5 healthy periapical tissues were used for expression analysis of 84 wound healing genes by using a pathway-specific real-time polymerase chain reaction array. The remaining 83 granulomas and all 24 control specimens were used to validate the obtained array data by real-time polymerase chain reaction. Observed variations in expression of wound healing genes were analyzed according to the classification of periapical granulomas as active/progressive versus inactive/stable (as determined by receptor activator for nuclear factor kappa B ligand/osteoprotegerin expression ratio). Results: We observed a marked increase of 5-fold or greater in SERPINE1, TIMP1, COL1A1, COL5A1, VTN, CTGF, FGF7, TGFB1, TNF, CXCL11, ITGA4, and ITGA5 genes in the periapical granulomas when compared with control samples. SERPINE1, TIMP1, COL1A1, TGFB1, and ITGA4 mRNA expression was significantly higher in inactive compared with active periapical granulomas (P < .001), whereas TNF and CXCL11 mRNA expression was higher in active lesions (P < .001). Conclusions: The identification of novel gene targets that curb the progression status of periapical lesions might contribute to a more accurate diagnosis and lead to treatment modalities more conducive to endodontic success. (J Endod 2012;38:185-190)
Resumo:
Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs) harvested on titanium (Ti), using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs) on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.
Resumo:
Aim: To compare the clinical, radiographic and histological responses of the pulp to mineral trioxide aggregate (MTA), calcium hydroxide (CH) and Portland cement (PC) when used as a pulpotomy agent in human primary teeth. Study design: Forty-five mandibular primary molar teeth were randomly assigned to CH, MTA or PC groups and treated by pulpotomy technique. Methods: The teeth were treated by conventional pulpotomy technique, differing only in the capping material for each group. Clinical and radiographic evaluations were recorded at 6-, 12- and 24-month follow-up. Teeth in the regular exfoliation period were further processed for histologic analysis. Statistics: The teeth were treated by conventional pulpotomy technique, differing only in the capping material for each group. Clinical and radiographic evaluations were recorded at 6-, 12- and 24-month follow-up. Teeth in the regular exfoliation period were further processed for histologic analysis. Statistics: Clinically and radiographically, the MTA and PC groups showed 100 % success rates at 6, 12 and 24 months. In CH group, several teeth presented clinical and radiographic failures detected throughout the follow-up period, and internal resorption was a frequent radiographic finding. Histologic analysis revealed the presence of dentine-like mineralised material deposition obliterating the root canal in the PC and MTA groups. CH group presented, in most of the sections, necrotic areas in the root canals. Conclusions: MTA and PC may serve as effective materials for pulpotomies of primary teeth as compared to CH. Although our results are very encouraging, further studies and longer follow-up assessments are needed in order to determine the safe clinical indication of Portland cement.
Resumo:
Background: The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). Findings: ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), β-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. Conclusions: We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis.
Resumo:
Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis
Resumo:
Natural hazard related to the volcanic activity represents a potential risk factor, particularly in the vicinity of human settlements. Besides to the risk related to the explosive and effusive activity, the instability of volcanic edifices may develop into large landslides often catastrophically destructive, as shown by the collapse of the northern flank of Mount St. Helens in 1980. A combined approach was applied to analyse slope failures that occurred at Stromboli volcano. SdF slope stability was evaluated by using high-resolution multi-temporal DTMMs and performing limit equilibrium stability analyses. High-resolution topographical data collected with remote sensing techniques and three-dimensional slope stability analysis play a key role in understanding instability mechanism and the related risks. Analyses carried out on the 2002–2003 and 2007 Stromboli eruptions, starting from high-resolution data acquired through airborne remote sensing surveys, permitted the estimation of the lava volumes emplaced on the SdF slope and contributed to the investigation of the link between magma emission and slope instabilities. Limit Equilibrium analyses were performed on the 2001 and 2007 3D models, in order to simulate the slope behavior before 2002-2003 landslide event and after the 2007 eruption. Stability analyses were conducted to understand the mechanisms that controlled the slope deformations which occurred shortly after the 2007 eruption onset, involving the upper part of slope. Limit equilibrium analyses applied to both cases yielded results which are congruent with observations and monitoring data. The results presented in this work undoubtedly indicate that hazard assessment for the island of Stromboli should take into account the fact that a new magma intrusion could lead to further destabilisation of the slope, which may be more significant than the one recently observed because it will affect an already disarranged deposit and fractured and loosened crater area. The two-pronged approach based on the analysis of 3D multi-temporal mapping datasets and on the application of LE methods contributed to better understanding volcano flank behaviour and to be prepared to undertake actions aimed at risk mitigation.
Resumo:
Flicker is a power quality phenomenon that applies to cycle instability of light intensity resulting from supply voltage fluctuation, which, in turn can be caused by disturbances introduced during power generation, transmission or distribution. The standard EN 61000-4-15 which has been recently adopted also by the IEEE as IEEE Standard 1453 relies on the analysis of the supply voltage which is processed according to a suitable model of the lamp – human eye – brain chain. As for the lamp, an incandescent 60 W, 230 V, 50 Hz source is assumed. As far as the human eye – brain model is concerned, it is represented by the so-called flicker curve. Such a curve was determined several years ago by statistically analyzing the results of tests where people were subjected to flicker with different combinations of magnitude and frequency. The limitations of this standard approach to flicker evaluation are essentially two. First, the provided index of annoyance Pst can be related to an actual tiredness of the human visual system only if such an incandescent lamp is used. Moreover, the implemented response to flicker is “subjective” given that it relies on the people answers about their feelings. In the last 15 years, many scientific contributions have tackled these issues by investigating the possibility to develop a novel model of the eye-brain response to flicker and overcome the strict dependence of the standard on the kind of the light source. In this light of fact, this thesis is aimed at presenting an important contribution for a new Flickermeter. An improved visual system model using a physiological parameter that is the mean value of the pupil diameter, has been presented, thus allowing to get a more “objective” representation of the response to flicker. The system used to both generate flicker and measure the pupil diameter has been illustrated along with all the results of several experiments performed on the volunteers. The intent has been to demonstrate that the measurement of that geometrical parameter can give reliable information about the feeling of the human visual system to light flicker.
Resumo:
The comparative genomic sequence analysis of a region in human chromosome 11p15.3 and its homologous segment in mouse chromosome 7 between ST5 and LMO1 genes has been performed. 158,201 bases were sequenced in the mouse and compared with the syntenic region in human, partially available in the public databases. The analysed region exhibits the typical eukaryotic genomic structure and compared with the close neighbouring regions, strikingly reflexes the mosaic pattern distribution of (G+C) and repeats content despites its relative short size. Within this region the novel gene STK33 was discovered (Stk33 in the mouse), that codes for a serine/threonine kinase. The finding of this gene constitutes an excellent example of the strength of the comparative sequencing approach. Poor gene-predictions in the mouse genomic sequence were corrected and improved by the comparison with the unordered data from the human genomic sequence publicly available. Phylogenetical analysis suggests that STK33 belongs to the calcium/calmodulin-dependent protein kinases group and seems to be a novelty in the chordate lineage. The gene, as a whole, seems to evolve under purifying selection whereas some regions appear to be under strong positive selection. Both human and mouse versions of serine/threonine kinase 33, consists of seventeen exons highly conserved in the coding regions, particularly in those coding for the core protein kinase domain. Also the exon/intron structure in the coding regions of the gene is conserved between human and mouse. The existence and functionality of the gene is supported by the presence of entries in the EST databases and was in vivo fully confirmed by isolating specific transcripts from human uterus total RNA and from several mouse tissues. Strong evidence for alternative splicing was found, which may result in tissue-specific starting points of transcription and in some extent, different protein N-termini. RT-PCR and hybridisation experiments suggest that STK33/Stk33 is differentially expressed in a few tissues and in relative low levels. STK33 has been shown to be reproducibly down-regulated in tumor tissues, particularly in ovarian tumors. RNA in-situ hybridisation experiments using mouse Stk33-specific probes showed expression in dividing cells from lung and germinal epithelium and possibly also in macrophages from kidney and lungs. Preliminary experimentation with antibodies designed in this work, performed in parallel to the preparation of this manuscript, seems to confirm this expression pattern. The fact that the chromosomal region 11p15 in which STK33 is located may be associated with several human diseases including tumor development, suggest further investigation is necessary to establish the role of STK33 in human health.
Resumo:
Comparative fluorescence in situ hybridization (FISH) mapping revealed four large DNA segments which have been conserved in their entirety between human chromosome 3 and Bornean orangutan chromosome 2 as well as three evolutionary breakpoints which distinguish between the human and Bornean orangutan chromosome forms. Examination of the structural and functional features of evolutionary breakpoints provides new insights into the possible effects of evolutionary rearrangements on genome function and the relationship between human chromosome pathology and evolution. FISH of human BAC clones which were assesssed in human genomic sequence to primate chromosomes, combined with precise breakpoint localizations by polymerase chain reaction (PCR) analysis of flow-sorted chromosomes and in silico analysis, were used to characterize the evolutionary breakpoints. None of the three breakpoints studied disrupts a validated gene(s), however they are all associated with segmental duplications. At least eleven DNA segments (&a
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
The present thesis illustrates the research carried out during the PhD studies in Bioengineering. The research was aimed to characterise the human bone tissue, with particular regard to the differences between cortical and trabecular bone. The bone tissue characteristics that affect its mechanical properties were verified or identified, using an experimental approach, to corroborate or refute hypotheses based on the state of the art in bone tissue biomechanics. The studies presented in the present PhD thesis were designed to investigate aspects of bone tissue biomechanics, which were in need of a more in-depth examination since the data found in the literature was contradictory or scarce. In particular, the work was focalised on the characterisation of the basic structure of the bone tissue (groups of lamellae), its composition, its spatial organisation (trabecular bone microarchitecture) and their influence on the mechanical properties. In conclusion, the present thesis integrates eight different studies on the characterisation of bone tissue. A more in-depth examination of some of the aspects of bone tissue biomechanics where the data found in the literature was contradictory or scarce was performed. Bone tissue was investigated at several scales, from its composition up to its spatial organization, to determine which parameters influence the mechanical behaviour of the tissue. It was found that although the composition and real density of bone tissue are similar, the differences in structure at different levels cause differences between the two types of bone tissue (cortical and trabecular) in mechanical properties. However, the apparent density can still be considered a good predictor of the mechanical properties of both cortical and trabecular bone. Finally, it was found that the bone tissue characteristics might change when a pathology is present, as demonstrated for OA.
Resumo:
Slender and lighter footbridges are becoming more and more popular to meet the transportation demand and the aesthetical requirements of the modern society. The widespread presence of such particular structures has become possible thanks to the availability of new, lightweight and still capable of carrying heavy loads material . Therefore, these kind of structure, are particularly sensitive to vibration serviceability problems, especially induced by human activities. As a consequence, it has been imperative to study the dynamic behaviour of such slender pedestrian bridges in order to define their modal characteristics. As an alternative to a Finite Element Analysis to find natural frequencies, damping and mode shape, a so-called Operational Modal Analysis is a valid tool to obtain these parameters through an ambient vibration test. This work provides a useful insight into the Operational Modal Analysis technique and It reports the investigation of the CEME Skywalk, a pedestrian bridge located at the University of British Columbia, in Vancouver, Canada. Furthermore, human-induced vibration tests have been performed and the dynamic characteristics derived with these tests have been compared with the ones from the ambient vibration tests. The effect of the dynamic properties of the two buildings supporting the CEME Skywalk on the dynamic behaviour of the bridge has been also investigated.