993 resultados para Geography Climate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In their call to action, Ones and Dilchert(2012) discuss several possible individual and some contextual determinants of employee green behavior that await examination by industrial and organizational I–O) psychologists. Although these authors briefly mentioned organizational climate, specifically ethical climate, as a potentially relevant predictor of green behaviors, they mostly emphasized the role of individual difference characteristics and traditional job performance determinants such as knowledge, skills, abilities, and other person factors (KSAOs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3A degrees C, +17% rainfall; +2A degrees C, -7% rainfall; and +3A degrees C, -46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2A degrees C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter reviews the concepts of organizational culture and climate and applies them to environmental sustainability. Though culture and climate are often used interchangeably, the chapter identifies key distinctions between them and highlights how they can complement one another. The two concepts are used to discuss how the organizational context for environmental sustainability, and employee perceptions thereof, influence individual pro-environmental behavior. Organizational climate is integrated with a dynamic model of organizational culture to describe how pro-environmental cultures and climates emerge. The chapter also highlights how organizations with different motivations can create pro-environmental cultures and climates. The chapter uses the Sierra Nevada Brewing Company as an archetype of an organization with a pro-environmental culture and climate. In the course of the discussion, the chapter nominates several imperatives for research and recommendations for practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored pre-service secondary science teachers’ perceptions of classroom emotional climate in the context of the Bhutanese macro-social policy of Gross National Happiness. Drawing upon sociological perspectives of human emotions and using Interaction Ritual Theory this study investigated how pre-service science teachers may be supported in their professional development. It was a multi-method study involving video and audio recordings of teaching episodes supported by interviews and the researcher’s diary. Students also registered their perceptions of the emotional climate of their classroom at 3-minute intervals using audience response technology. In this way, emotional events were identified for video analysis. The findings of this study highlighted that the activities pre-service teachers engaged in matter to them. Positive emotional climate was identified in activities involving students’ presentations using video clips and models, coteaching, and interactive whole class discussions. Decreases in emotional climate were identified during formal lectures and when unprepared presenters led presentations. Emotions such as frustration and disappointment characterized classes with negative emotional climate. The enabling conditions to sustain a positive emotional climate are identified. Implications for sustaining macro-social policy about Gross National Happiness are considered in light of the climate that develops in science teacher education classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The paper evaluates the effect of future climate change (as per the CSIRO Mk3.5 A1FI future climate projection) on cotton yield in Southern Queensland and Northern NSW, eastern Australia by using of the biophysical simulation model APSIM (Agricultural Production Systems sIMulator). The simulations of cotton production show that changes in the influential meteorological parameters caused by climate change would lead to decreased future cotton yields without the effect of CO2 fertilisation. By 2050 the yields would decrease by 17 %. Including the effects of CO2 fertilisation ameliorates the effect of decreased water availability and yields increase by 5.9 % by 2030, but then decrease by 3.6 % in 2050. Importantly, it was necessary to increase irrigation amounts by almost 50 % to maintain adequate soil moisture levels. The effect of CO2 was found to have an important positive impact of the yield in spite of deleterious climate change. This implies that the physiological response of plants to climate change needs to be thoroughly understood to avoid making erroneous projections of yield and potentially stifling investment or increasing risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi- and intralake datasets of fossil midge assemblages in surface sediments of small shallow lakes in Finland were studied to determine the most important environmental factors explaining trends in midge distribution and abundance. The aim was to develop palaeoenvironmental calibration models for the most important environmental variables for the purpose of reconstructing past environmental conditions. The developed models were applied to three high-resolution fossil midge stratigraphies from southern and eastern Finland to interpret environmental variability over the past 2000 years, with special focus on the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and recent anthropogenic changes. The midge-based results were compared with physical properties of the sediment, historical evidence and environmental reconstructions based on diatoms (Bacillariophyta), cladocerans (Crustacea: Cladocera) and tree rings. The results showed that the most important environmental factor controlling midge distribution and abundance along a latitudinal gradient in Finland was the mean July air temperature (TJul). However, when the dataset was environmentally screened to include only pristine lakes, water depth at the sampling site became more important. Furthermore, when the dataset was geographically scaled to southern Finland, hypolimnetic oxygen conditions became the dominant environmental factor. The results from an intralake dataset from eastern Finland showed that the most important environmental factors controlling midge distribution within a lake basin were river contribution, water depth and submerged vegetation patterns. In addition, the results of the intralake dataset showed that the fossil midge assemblages represent fauna that lived in close proximity to the sampling sites, thus enabling the exploration of within-lake gradients in midge assemblages. Importantly, this within-lake heterogeneity in midge assemblages may have effects on midge-based temperature estimations, because samples taken from the deepest point of a lake basin may infer considerably colder temperatures than expected, as shown by the present test results. Therefore, it is suggested here that the samples in fossil midge studies involving shallow boreal lakes should be taken from the sublittoral, where the assemblages are most representative of the whole lake fauna. Transfer functions between midge assemblages and the environmental forcing factors that were significantly related with the assemblages, including mean air TJul, water depth, hypolimnetic oxygen, stream flow and distance to littoral vegetation, were developed using weighted averaging (WA) and weighted averaging-partial least squares (WA-PLS) techniques, which outperformed all the other tested numerical approaches. Application of the models in downcore studies showed mostly consistent trends. Based on the present results, which agreed with previous studies and historical evidence, the Medieval Climate Anomaly between ca. 800 and 1300 AD in eastern Finland was characterized by warm temperature conditions and dry summers, but probably humid winters. The Little Ice Age (LIA) prevailed in southern Finland from ca. 1550 to 1850 AD, with the coldest conditions occurring at ca. 1700 AD, whereas in eastern Finland the cold conditions prevailed over a longer time period, from ca. 1300 until 1900 AD. The recent climatic warming was clearly represented in all of the temperature reconstructions. In the terms of long-term climatology, the present results provide support for the concept that the North Atlantic Oscillation (NAO) index has a positive correlation with winter precipitation and annual temperature and a negative correlation with summer precipitation in eastern Finland. In general, the results indicate a relatively warm climate with dry summers but snowy winters during the MCA and a cool climate with rainy summers and dry winters during the LIA. The results of the present reconstructions and the forthcoming applications of the models can be used in assessments of long-term environmental dynamics to refine the understanding of past environmental reference conditions and natural variability required by environmental scientists, ecologists and policy makers to make decisions concerning the presently occurring global, regional and local changes. The developed midge-based models for temperature, hypolimnetic oxygen, water depth, littoral vegetation shift and stream flow, presented in this thesis, are open for scientific use on request.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and changes in the distribution of herbivorous mammal communities during the Neogene is complex. The Eurasian scale environmental patterns reflect the large scale geographical and climatic patterns. The reorganization of these affect the biome distribution throughout the continent. The distribution of mammal taxa was closely associated with the distribution of biomes. In Eurasia the Neogene development of environments was twofold. The early and middle Miocene that seemed to have been advantageous for mammals was followed by drying of environments during the late Neogene. The mid-latitude drying was the main trend, and it is the combined result of the retreat of Paratethys, the uplift of Tibetan Plateau and changes in the ocean currents and temperatures. The common mammals were "driving" the evolution of mammalian communities. During the late Miocene we see the drying affecting more and more regions, and we see changes in the composition of mammalian communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most countries of Europe, as well as many countries in other parts of the world, are experiencing an increased impact of natural hazards. It is often speculated, but not yet proven, that climate change might influence the frequency and magnitude of certain hydro-meteorological natural hazards. What has certainly been observed is a sharp increase in financial losses caused by natural hazards worldwide. Eventhough Europe appears to be a space that is not affected by natural hazards to such catastrophic extents as other parts of the world are, the damages experienced here are certainly increasing too. Natural hazards, climate change and, in particular, risks have therefore recently been put high on the political agenda of the EU. In the search for appropriate instruments for mitigating impacts of natural hazards and climate change, as well as risks, the integration of these factors into spatial planning practices is constantly receiving higher attention. The focus of most approaches lies on single hazards and climate change mitigation strategies. The current paradigm shift of climate change mitigation to adaptation is used as a basis to draw conclusions and recommendations on what concepts could be further incorporated into spatial planning practices. Especially multi-hazard approaches are discussed as an important approach that should be developed further. One focal point is the definition and applicability of the terms natural hazard, vulnerability and risk in spatial planning practices. Especially vulnerability and risk concepts are so many-fold and complicated that their application in spatial planning has to be analysed most carefully. The PhD thesis is based on six published articles that describe the results of European research projects, which have elaborated strategies and tools for integrated communication and assessment practices on natural hazards and climate change impacts. The papers describe approaches on local, regional and European level, both from theoretical and practical perspectives. Based on these, passed, current and future potential spatial planning applications are reviewed and discussed. In conclusion it is recommended to shift from single hazard assessments to multi-hazard approaches, integrating potential climate change impacts. Vulnerability concepts should play a stronger role than present, and adaptation to natural hazards and climate change should be more emphasized in relation to mitigation. It is outlined that the integration of risk concepts in planning is rather complicated and would need very careful assessment to ensure applicability. Future spatial planning practices should also consider to be more interdisciplinary, i.e. to integrate as many stakeholders and experts as possible to ensure the sustainability of investments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.