Remote sensing of boreal land cover: estimation of forest attributes and extent


Autoria(s): Heiskanen, Janne
Contribuinte(s)

Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, maantieteen laitos

Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, geografiska institutionen

University of Helsinki, Faculty of Science, Department of Geography

Data(s)

11/01/2008

Resumo

Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.

Kaukokartoituksella voidaan tuottaa tietoa maanpeitteen ominaisuuksista ja muutoksista laajoilla alueilla. Tietoa maanpeitteestä tarvitaan esimerkiksi ympäristömalleihin, ilmastonmuutoksen vaikutusten seurantaan ja päätöksenteon tueksi. Boreaalisilla metsillä on tärkeä merkitys maapallon ilmastolle ja ne ovat tärkeä hiilinielu. Pohjoisten alueiden ilmaston on ennustettu lämpenevän voimakkaasti ilmastonmuutoksen seurauksena, millä voi olla merkittävä vaikutus metsänrajavyöhykkeen kasvillisuuteen. Väitöskirjassa tarkastellaan optisen alueen satelliittikaukokartoituksen käyttöä metsän ominaisuuksien, kuten biomassan ja puuston peittävyyden arviointiin ja kartoitukseen. Tutkimusalueet sijaitsevat eteläisessä Suomessa ja Pohjois-Suomen metsänrajavyöhykkeessä. Keskeisimpinä tavoitteina oli tutkia satelliittikuva-aineistojen käyttökelpoisuutta ja monikulmaisen ja -aikaisen informaation mahdollisuuksia sekä arvioida globaalien maanpeitetuotteiden luotettavuutta. Satelliittikuva-aineistona käytettiin ASTER, MISR ja MODIS -kuvatuotteita ja vertailuaineistona maastomittauksia, inventointiaineistoja ja maanpeitekarttoja. Tutkimustuloksia voidaan hyödyntää maanpeitteen kartoituksessa ja muutostulkinnassa boreaalisilla alueilla. Korkearesoluutioiset aineistot havainnollistavat kuinka heijastuksen ja biomassan välinen riippuvuus on voimakkaampi harvapuustoisissa tunturikoivikoissa kuin havupuuvaltaisissa metsissä, joiden biomassa on suurempi. Käyttämällä yhdessä kuvioittaista maastoaineistoa ja eri resoluutioisia satelliittikuvia voidaan tuottaa biomassa-arvioita laajoille alueille. Metsänrajavyöhykkeessä monikulmaiset aineistot parantavat metsämuuttujien arvioita vähentäen yliarviointia ongelmallisilla avosoilla ja pensastoisilla alueilla. Myös moniaikainen aineisto parantaa kartoitustarkkuutta. Keskikesän kuvat eivät ole välttämättä ihanteellisimpia kasvipeitteen tulkintaan. Globaalit maanpeitetuotteet osoittautuivat Ylä-Lapissa puutteellisiksi ja niitä tulee käyttää varauksella vastaavilla alueilla, esimerkiksi arvioitaessa metsän laajuutta. Tutkimuksessa korostuivat myös kvantitatiivisen maastoaineiston merkitys maanpeiteaineistojen arvioinnissa sekä maasto- ja satelliittikuva-aineiston yhdistämiseen liittyvät kysymykset. Työssä käytetyt esikäsitellyt kuva-aineistot voivat jatkossa vähentää merkittävästi kuvankäsittelyyn käytettävää aikaa.

Identificador

URN:ISBN:978-952-10-4448-9

http://hdl.handle.net/10138/21186

Idioma(s)

en

Publicador

Helsingin yliopisto

Helsingfors universitet

University of Helsinki

Relação

URN:ISBN:978-952-10-4447-2

Dark Oy, Vantaa: Maantieteen laitos, Helsingin yliopisto, 2007, Helsingin yliopiston maantieteen laitoksen julkaisuja. 0300-2934

Direitos

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.

Palavras-Chave #maantiede (geoinformatiikka)
Tipo

Väitöskirja (artikkeli)

Doctoral dissertation (article-based)

Doktorsavhandling (sammanläggning)

Text