947 resultados para Differential equations, Nonlinear
Resumo:
In this paper we discuss the algebraic construction of the mKdV hierarchy in terms of an affine Lie algebra (s) over capl(2). An interesting novelty araises from the negative even grade sector of the affine algebra leading to nonlinear integro-differential equations admiting non-trivial vacuum configuration. These solitons solutions are constructed systematically from generalization of the dressing method based on non zero vacua. The sub-hierarchies admiting such class of solutions are classified.
Resumo:
The dynamical properties of a classical particle bouncing between two rigid walls, in the presence of a drag force, are studied for the case where one wall is fixed and the other one moves periodically in time. The system is described in terms of a two-dimensional nonlinear map obtained by solution of the relevant differential equations. It is shown that the structure of the KAM curves and the chaotic sea is destroyed as the drag force is introduced. At high energy, the velocity of the particle decreases linearly with increasing iteration number, but with a small superimposed sinusoidal modulation. If the motion passes near enough to a fixed point, the particle approaches it exponentially as the iteration number evolves, with a speed of approach that depends on the strength of the drag force. For a simplified version of the model it is shown that, at low energies corresponding to the region of the chaotic sea in the non-dissipative model, the particle wanders in a chaotic transient that depends on the strength of the drag coefficient. However, the KAM islands survive in the presence of dissipation. It is confirmed that the fixed points and periodic orbits go over smoothly into the orbits of the well-known (non-dissipative) Fermi-Ulam model as the drag force goes to zero.
Resumo:
The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is shown that a dissipative SFUM possesses regions of phase space characterized by the property of area preservation.
Resumo:
In this paper, a nonideal mechanical system with the LuGre friction damping model is considered. The mechanical model of the system is an oscillator not necessarily linear connected with an unbalanced motor of excitation with limited power supply. The control of motion and the attenuation of the Sommerfeld effect of the considered nonideal system are analyzed in this paper The mathematical model of the system is represented by coupled non-linear differential equations. The identification of some interesting nonlinear phenomenon in the transient and steady state motion of the system during the passage through resonance (using applied voltages at dc motor as control parameter) is investigated in detail using numerical simulation. [DOI: 10.1115/1.3124783]
Resumo:
For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).
Resumo:
Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.
Resumo:
In this paper we discuss the existence of compact attractor for the abstract semilinear evolution equation u = Au + f (t, u); the results are applied to damped partial differential equations of hyperbolic type. Our approach is a combination of Liapunov method with the theory of alpha-contractions.
Resumo:
A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.
Resumo:
We present an investigation of the nonlinear partial differential equations (PDE) which are asymptotically representable as a linear combination of the equations from the Camassa-Holm hierarchy. For this purpose we use the infinitesimal transformations of dependent and independent variables of the original PDE. This approach is helpful for the analysis of the systems of the PDE which can be asymptotically represented as the evolution equations of polynomial structure. © 2000 American Institute of Physics.
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
A study was conducted on the dynamics of 2D and 3D Bose-Einstein condensates in the case when the scattering length in the Gross-Pitaevskii (GP) equation which contains constant (dc) and time-variable (ac) parts. Using the variational approximation (VA), simulating the GP equation directly, and applying the averaging procedure to the GP equation without the use of the VA, it was demonstrated that the ac component of the nonlinearity makes it possible to maintain the condensate in a stable self-confined state without external traps.
Resumo:
The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.
Resumo:
Some dynamical properties of the one dimensional Fermi accelerator model, under the presence of frictional force are studied. The frictional force is assumed as being proportional to the square particle's velocity. The problem is described by use of a two dimensional non linear mapping, therefore obtained via the solution of differential equations. We confirm that the model experiences contraction of the phase space area and in special, we characterized the behavior of the particle approaching an attracting fixed point. © 2007 American Institute of Physics.
Resumo:
This article presents and discusses necessary conditions of optimality for infinite horizon dynamic optimization problems with inequality state constraints and set inclusion constraints at both endpoints of the trajectory. The cost functional depends on the state variable at the final time, and the dynamics are given by a differential inclusion. Moreover, the optimization is carried out over asymptotically convergent state trajectories. The novelty of the proposed optimality conditions for this class of problems is that the boundary condition of the adjoint variable is given as a weak directional inclusion at infinity. This improves on the currently available necessary conditions of optimality for infinite horizon problems. © 2011 IEEE.
Resumo:
In this paper, we deal with the research of a proposed mathematical model of energy harvesting, including nonlinearities in the piezoelectric coupling and a non-ideal force of excitation. We showed using numerical simulations to analysis of the dynamic responses that, the power harvested was influenced by the nonlinear vibrations of the structure, as well as by the influence of the non-linearities in the piezoelectric coupling. We concluded through of the numerical results that the limited energy source was interacting with the system. Thus, the increasing of the voltage in DC motor led the system produce a good power response, especially in high-energy orbits in the resonance region, but the Sommerfeld effect occurs in the system and a chaotic behavior was found in the post-resonance region. So the power harvested along the time decreases because occurs loses of energy due the interaction between energy source and structure. Keeping the energy harvested constant over time is essential to make possible the use of energy harvesting systems in real applications. To achieve this objective, we applied a control technique in order to stabilize the chaotic system in a periodic stable orbit. We announced that the results were satisfactory and the control maintained the system in a stable condition. © 2012 Foundation for Scientific Research and Technological Innovation.