Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
26/02/2014
20/05/2014
26/02/2014
20/05/2014
01/07/2006
|
Resumo |
For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+). |
Formato |
767-814 |
Identificador |
http://dx.doi.org/10.1007/s10884-006-9023-4 Journal of Dynamics and Differential Equations. New York: Springer, v. 18, n. 3, p. 767-814, 2006. 1040-7294 http://hdl.handle.net/11449/25107 10.1007/s10884-006-9023-4 WOS:000241394900009 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Journal of Dynamics and Differential Equations |
Direitos |
closedAccess |
Palavras-Chave | #damped wave equation #strongly damped wave equation #dissipative semigroup #global attractor #uniform exponential dichotomy #upper #semicontinuity #lower semicontinuity |
Tipo |
info:eu-repo/semantics/article |