920 resultados para Bayesian statistical decision theory
Resumo:
Los resultados financieros de las organizaciones son objeto de estudio y análisis permanente, predecir sus comportamientos es una tarea permanente de empresarios, inversionistas, analistas y académicos. En el presente trabajo se explora el impacto del tamaño de los activos (valor total de los activos) en la cuenta de resultados operativos y netos, analizando inicialmente la relación entre dichas variables con indicadores tradicionales del análisis financiero como es el caso de la rentabilidad operativa y neta y con elementos de estadística descriptiva que permiten calificar los datos utilizados como lineales o no lineales. Descubriendo posteriormente que los resultados financieros de las empresas vigiladas por la Superintendencia de Sociedades para el año 2012, tienen un comportamiento no lineal, de esta manera se procede a analizar la relación de los activos y los resultados con la utilización de espacios de fase y análisis de recurrencia, herramientas útiles para sistemas caóticos y complejos. Para el desarrollo de la investigación y la revisión de la relación entre las variables de activos y resultados financieros se tomó como fuente de información los reportes financieros del cierre del año 2012 de la Superintendencia de Sociedades (Superintendencia de Sociedades, 2012).
Resumo:
Esta tesis está dividida en dos partes: en la primera parte se presentan y estudian los procesos telegráficos, los procesos de Poisson con compensador telegráfico y los procesos telegráficos con saltos. El estudio presentado en esta primera parte incluye el cálculo de las distribuciones de cada proceso, las medias y varianzas, así como las funciones generadoras de momentos entre otras propiedades. Utilizando estas propiedades en la segunda parte se estudian los modelos de valoración de opciones basados en procesos telegráficos con saltos. En esta parte se da una descripción de cómo calcular las medidas neutrales al riesgo, se encuentra la condición de no arbitraje en este tipo de modelos y por último se calcula el precio de las opciones Europeas de compra y venta.
Resumo:
This paper uses Colombian household survey data collected over the period 1984-2005 to estimate Gini coe¢ cients along with their corresponding standard errors. We Önd a statistically signiÖcant increase in wage income inequality following the adoption of the liberalisation measures of the early 1990s, and mixed evidence during the recovery years that followed the economic recession of the late 1990s. We also Önd that in several cases the observed di§erences in the Gini coe¢ cients across cities have not been statistically signiÖcant.
Resumo:
Para el administrador el proceso de la toma de decisiones es uno de sus mayores retos y responsabilidades, ya que en su desarrollo se debe definir el camino más acertado en un sin número de alternativas, teniendo en cuenta los obstáculos sociales, políticos y económicos del entorno empresarial. Para llegar a la decisión adecuada no hay que perder de vista los objetivos y metas propuestas, además de tener presente el proceso lógico, detectando, analizando y demostrando el porqué de esa elección. Consecuentemente el análisis que propone esta investigación aportara conocimientos sobre los tipos de lógica utilizados en la toma de decisiones estratégicas al administrador para satisfacer las demandas asociadas con el mercadeo para que de esta manera se pueda generar y ampliar eficientemente las competencia idóneas del administrador en la inserción internacional de un mercado laboral cada vez mayor (Valero, 2011). A lo largo de la investigación se pretende desarrollar un estudio teórico para explicar la relación entre la lógica y la toma de decisiones estratégicas de marketing y como estos conceptos se combinan para llegar a un resultado final. Esto se llevara a cabo por medio de un análisis de planes de marketing, iniciando por conceptos básicos como marketing, lógica, decisiones estratégicas, dirección de marketing seguido de los principios lógicos y contradicciones que se pueden llegar a generar entre la fundamentación teórica
Resumo:
La siguiente investigación describe una aproximación teórica al tema de los modelos de presupuestación de capital, el objetivo fundamental se basa en comprender su enfoque e importancia al momento de tomar decisiones de inversión por parte de los directores de una empresa, así como de prever los efectos de esta en un futuro. Al respecto, y sobre la base de que los modelos de presupuestación de capital son herramientas para analizar posibles erogaciones de capital por parte de una empresa, es necesario para efectos del presente proyecto de investigación, definir sus diferentes modelos desde lo teórico y metodológico, explicando los diferentes conceptos relacionados con el tema. Así mismo, se explican algunos de los indicadores financieros utilizados en las compañías para medir y estimar la “salud financiera” de la empresa, además de puntualizar su impacto en la perdurabilidad de las entidades, lo cual permite dar una visión más general sobre la importancia que trasciende de los indicadores financieros, generando un impacto positivo en la evolución o crecimiento de la organización. En complemento, la investigación aborda la presupuestación de capital de manera particular aplicado en la gestión empresarial, sean estas privadas o públicas (estatal y gubernamental). En este sentido, se abordan conceptos elaborados por diferentes académicos en los que se exponen algunas aproximaciones respecto al posible mejoramiento de la presupuestación para los sectores a los que pertenecen determinadas entidades. Finalmente, se presenta de manera explícita las conclusiones que surgieron a lo largo de la construcción del documento de investigación, con el fin de dar cumplimiento concreto al objetivo general del trabajo, el cual constituye una respuesta a la pregunta de investigación que se enunciará en el desarrollo del documento.
Resumo:
Resumen tomado de la publicación. Con el apoyo económico del departamento MIDE de la UNED. Contiene anexo de preguntas
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role is to provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
Bayesian inference has been used to determine rigorous estimates of hydroxyl radical concentrations () and air mass dilution rates (K) averaged following air masses between linked observations of nonmethane hydrocarbons (NMHCs) spanning the North Atlantic during the Intercontinental Transport and Chemical Transformation (ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior) distribution of a parameter given data related to the parameter through a model and prior beliefs about the parameter distribution. Here, the model describes hydrocarbon loss through OH reaction and mixing with a background concentration at rate K. The Lagrangian experiment provides direct observations of hydrocarbons at two time points, removing assumptions regarding composition or sources upstream of a single observation. The estimates are sharpened by using many hydrocarbons with different reactivities and accounting for their variability and measurement uncertainty. A novel technique is used to construct prior background distributions of many species, described by variation of a single parameter . This exploits the high correlation of species, related by the first principal component of many NMHC samples. The Bayesian method obtains posterior estimates of , K and following each air mass. Median values are typically between 0.5 and 2.0 × 106 molecules cm−3, but are elevated to between 2.5 and 3.5 × 106 molecules cm−3, in low-level pollution. A comparison of estimates from absolute NMHC concentrations and NMHC ratios assuming zero background (the “photochemical clock” method) shows similar distributions but reveals systematic high bias in the estimates from ratios. Estimates of K are ∼0.1 day−1 but show more sensitivity to the prior distribution assumed.
Resumo:
Systems Engineering often involves computer modelling the behaviour of proposed systems and their components. Where a component is human, fallibility must be modelled by a stochastic agent. The identification of a model of decision-making over quantifiable options is investigated using the game-domain of Chess. Bayesian methods are used to infer the distribution of players’ skill levels from the moves they play rather than from their competitive results. The approach is used on large sets of games by players across a broad FIDE Elo range, and is in principle applicable to any scenario where high-value decisions are being made under pressure.
Resumo:
Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.
Resumo:
A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.
Resumo:
Many different individuals, who have their own expertise and criteria for decision making, are involved in making decisions on construction projects. Decision-making processes are thus significantly affected by communication, in which a dynamic performance of human intentions leads to unpredictable outcomes. In order to theorise the decision making processes including communication, it is argued here that the decision making processes resemble evolutionary dynamics in terms of both selection and mutation, which can be expressed by the replicator-mutator equation. To support this argument, a mathematical model of decision making has been made from an analogy with evolutionary dynamics, in which there are three variables: initial support rate, business hierarchy, and power of persuasion. On the other hand, a survey of patterns in decision making in construction projects has also been performed through self-administered mail questionnaire to construction practitioners. Consequently, comparison between the numerical analysis of mathematical model and the statistical analysis of empirical data has shown a significant potential of the replicator-mutator equation as a tool to study dynamic properties of intentions in communication.
Resumo:
This study suggests a statistical strategy for explaining how food purchasing intentions are influenced by different levels of risk perception and trust in food safety information. The modelling process is based on Ajzen's Theory of Planned Behaviour and includes trust and risk perception as additional explanatory factors. Interaction and endogeneity across these determinants is explored through a system of simultaneous equations, while the SPARTA equation is estimated through an ordered probit model. Furthermore, parameters are allowed to vary as a function of socio-demographic variables. The application explores chicken purchasing intentions both in a standard situation and conditional to an hypothetical salmonella scare. Data were collected through a nationally representative UK wide survey of 533 UK respondents in face-to-face, in-home interviews. Empirical findings show that interactions exist among the determinants of planned behaviour and socio-demographic variables improve the model's performance. Attitudes emerge as the key determinant of intention to purchase chicken, while trust in food safety information provided by media reduces the likelihood to purchase. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, Bayesian decision procedures previously proposed for dose-escalation studies in healthy volunteers are reviewed and evaluated. Modifications are made to the expression of the prior distribution in order to make the procedure simpler to implement and a more relevant criterion for optimality is introduced. The results of an extensive simulation exercise to establish the proper-ties of the procedure and to aid choice between designs are summarized, and the way in which readers can use simulation to choose a design for their own trials is described. The influence of the value of the within-subject correlation on the procedure is investigated and the use of a simple prior to reflect uncertainty about the correlation is explored. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
In conventional phylogeographic studies, historical demographic processes are elucidated from the geographical distribution of individuals represented on an inferred gene tree. However, the interpretation of gene trees in this context can be difficult as the same demographic/geographical process can randomly lead to multiple different genealogies. Likewise, the same gene trees can arise under different demographic models. This problem has led to the emergence of many statistical methods for making phylogeographic inferences. A popular phylogeographic approach based on nested clade analysis is challenged by the fact that a certain amount of the interpretation of the data is left to the subjective choices of the user, and it has been argued that the method performs poorly in simulation studies. More rigorous statistical methods based on coalescence theory have been developed. However, these methods may also be challenged by computational problems or poor model choice. In this review, we will describe the development of statistical methods in phylogeographic analysis, and discuss some of the challenges facing these methods.