897 resultados para Analysis of growth
Resumo:
Deregulation of kinase activity is one example of how cells become cancerous by evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in Arabidopsis thaliana as a developmentally important kinase. There are two mammalian orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes. I discovered an unanticipated requirement for TLK-1 in mitotic spindle assembly and positioning. Normally, in the newly-fertilized zygote (P0) the maternal pronucleus migrates toward the paternal pronucleus at the posterior end of the embryo. After pronuclear meeting, the pronuclear-centrosome complex rotates 90° during centration to align on the anteroposterior axis followed by nuclear envelope breakdown (NEBD). However, in TLK-1-depleted P0 embryos, the centrosome-pronuclear complex rotation is significantly delayed with respect to NEBD and chromosome congression, Additionally, centrosome positions over time in tlk-1(RNAi) early embryos revealed a defect in posterior centrosome positioning during spindle-pronuclear centration, and 4D analysis of centrosome positions and movement in newly fertilized embryos showed aberrant centrosome dynamics in TLK-1-depleted embryos. Several mechanisms contribute to spindle rotation, one of which is the anchoring of astral microtubules to the cell cortex. Attachment of these microtubules to the cortices is thought to confer the necessary stability and forces in order to rotate the centrosome-pronuclear complex in a timely fashion. Analysis of a microtubule end-binding protein revealed that TLK-1-depleted embryos exhibit a more stochastic distribution of microtubule growth toward the cell cortices, and the types of microtubule attachments appear to differ from wild-type embryos. Additionally, fewer astral microtubules are in the vicinity of the cell cortex, thus suggesting that the delayed spindle rotation could be in part due to a lack of appropriate microtubule attachments to the cell cortex. Together with recently published biochemical data revealing the Tousled-like kinases associate with components of the dynein microtubule motor complex in humans, these data suggest that Tousled-like kinases play an important role in mitotic spindle assembly and positioning.
Resumo:
Life expectancy has consistently increased over the last 150 years due to improvements in nutrition, medicine, and public health. Several studies found that in many developed countries, life expectancy continued to rise following a nearly linear trend, which was contrary to a common belief that the rate of improvement in life expectancy would decelerate and was fit with an S-shaped curve. Using samples of countries that exhibited a wide range of economic development levels, we explored the change in life expectancy over time by employing both nonlinear and linear models. We then observed if there were any significant differences in estimates between linear models, assuming an auto-correlated error structure. When data did not have a sigmoidal shape, nonlinear growth models sometimes failed to provide meaningful parameter estimates. The existence of an inflection point and asymptotes in the growth models made them inflexible with life expectancy data. In linear models, there was no significant difference in the life expectancy growth rate and future estimates between ordinary least squares (OLS) and generalized least squares (GLS). However, the generalized least squares model was more robust because the data involved time-series variables and residuals were positively correlated. ^
Resumo:
p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^
Resumo:
The tumor suppressor p53 is a phosphoprotein which functions as a transcriptional activator. By monitoring the transcriptional activity, we studied how p53 functions is regulated in relation to cell growth and contact inhibition. When cells were arrested at G1 phase of the cell cycle by contact inhibition, we found that p53 transactivation function was suppressed. When contact inhibition was overridden by cyclin E overexpression which stimulates cell cycle progression, p53 function was restored. This observation led to the development of a cell density assay to study the regulation of p53 function during cell cycle for the functional significance of p53 phosphorylation. The murine p53 is phosphorylated at serines 7, 9, 12, 18, 37, 312 and 389. To understand the role of p53 phosphorylation, we generated p53 constructs encoding serine-to-alanine or serine-to-glutamate mutations at these codons. The transcriptional activity were measured in cells capable of contact inhibition. In low-density cycling cells, no difference in transcriptional activity was found between wild type p53 and any of the mutants. In contact-inhibited cells, however, only mutations of p53 at serine 389 resulted in altered responses to cell cycle arrest and to cyclin E overexpression. The mutant with serine-to-glutamate substitution at codon 389 retained its function in contact inhibited cells. Cyclin E overexpression in these cells induced p53 phosphorylation at serine 389. Furthermore, we showed that phosphorylation at serine 389 regulates p53 DNA binding activity. Our findings implicate that phosphorylation is an important mechanism for p53 activation.^ p53 is the most frequently mutated gene in human tumors. To study the mechanism of p53 inactivation by mutations, we carried out detailed analysis of a murine p53 mutation with an arginine-to-tryptophane substitution at codon 245. The corresponding human p53 mutation at amino acid 248 is the most frequently mutated codon in tumors. We showed that this mutant is inactive in suppressing focus formation, binding to DNA and transactivation. Structural analysis revealed that this mutant assumes the wild type protein conformation. These findings define a novel class of p53 mutations and help to understand structure-function relationship of p53. ^
Resumo:
Human heparin/heparan sulfate interacting protein/L29 (HIP/L29) is a heparin/heparan sulfate (Hp/HS) binding protein found in many adult human tissues. Potential functions of this protein are promotion of embryo adhesion, modulation of blood coagulation, and control of cell growth. While these activities are diverse, the ability of human HIP/L29 to interact with Hp/HS at the cell surface may be a unifying mechanism of action since Hp/HS influences all of these processes. A murine ortholog has been identified that has 78.8% homology over the entire sequence and identity over the N-terminal 64 amino acids when compared to human HIP/L29. Northern, Western, and immunohistochemical analysis shows that murine HIP/L29 mRNA and protein are expressed in a tissue specific manner. Murine HIP/L29 is enriched in the membrane fraction of NmuMG cells where it is eluted with high salt, suggesting that it is a peripheral membrane protein. The ability of murine HIP/L29 to bind Hp is verified by studies using native and recombinant forms of murine HIP/L29. A synthetic peptide (HIP peptide-2) derived from the identical N-terminal region of HIP/L29 proteins was tested for the ability to bind Hp and support cell adhesion. This peptide was chosen because it conforms to a proposed consensus sequence for Hp/HS binding peptides. HIP peptide-2 binds Hp in a dose-dependent, saturable, and selective manner and supports Hp-dependent cell adhesion. However, a scrambled form of this peptide displayed similar activities indicating a lack of peptide sequence specificity required for activity. Lastly, an unbiased approach was used to identify sequences within human and mouse HIP/L29 proteins necessary for Hp/HS binding. A panel of recombinant proteins was made that collectively are deficient in every human HIP/L29 domain. The activities of these deletion mutants and recombinant murine HIP/L29 were compared to the activity of recombinant human HIP/L29 in a number of assays designed to look at differences in the ability to bind Hp/HS. These studies suggest that each domain within human HIP/L29 is important for binding to Hp/HS and divergences in the C-terminus of human and mouse HIP/L29 account for a decrease in murine HIP/L29 affinity for Hp/HS. It is apparent that multiple domains within human and mouse HIP/L29 contribute to the function of Hp/HS binding. The interaction of multiple HIP/L29 domains with Hp/HS will influence the biological activity of HIP/L29 proteins. ^
Resumo:
Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^
Resumo:
Sox9 is a Sry-related HMG-domain containing transcription factor. Lines of evidence suggest that Sox9 has a potential role in skeletal development. During mouse development, Sox9 is predominantly expressed in all chondroprogenitors and differentiated chondrocytes, throughout the deposition of cartilage matrix. Mutations in one allele of SOX9 in humans result in campomelic dysplasia (CD), a skeletal dysplasia. syndrome characterized by the bowing of long bones. Moreover, Sox9 binds to and activates chondrocyte-specific enhancers in Col2a1 and Col11a2 genes. To further investigate the function of Sox9 in chondrogenesis, we analyzed chimeras derived from Sox9 heterozygous and homozygous null embryonic stem (ES) cells. In mouse chimeras, Sox9 −/− cells were excluded from all cartilages and did not express chondrocyte-specific genes. The segregation occurred during mesenchymal condensation. No cartilages developed in teratocarcinomas derived from Sox9 −/− ES cells. Mice heterozygous for the Sox9 mutation died neonatally and exhibited skeletal abnormalities resembling those of the CD patients. The Sox9 +/− mutants had a cleft palate and hypoplasia of scapula, pelvis and other skeletal structures derived by endochondral ossification. Bending of the radius, ulna and tibia cartilage was prominent at embryonic day 14.5 (E14.5). At E12.5 many pre-cartilaginous condensations were already defective. Advanced ossification was observed and the hypertrophic zone was enlarged in the growth plates, suggesting that Sox9 also regulates hypertrophic chondrocyte differentiation. Our results identify Sox9 as the first essential regulator of chondrocyte differentiation, which plays multiple roles in chondrogenesis. ^
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
The Duolong porphyry Cu-Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118 Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81 wt.%, K2O of 2.90-5.17 wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N = 6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27 per mil; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metsomatizied mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit.
Resumo:
Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae.
Resumo:
The usually high concentrations of Zn, Pb, Cd, and Cu in the most recently accreted portions of ferromanganese nodules from the western Baltic Sea are thought to reflect increased metal input due to anthropogenic mobilization. If so, the point of increase represents a time horizon within the structure of the nodule. Similar trace metal distributions of radiometrically dated sediments from the same area suggest that the ferromanganese nodules have grown in thickness between 0.02 and 0.16 mm yr-1. From this growth rate anthropogenic Zn flux to the nodule surface was calculated to be 80 mg m-2 yr-1.
Resumo:
Manganese nodules research has focused on the area between the Clarion Fracture Zone to the North and the Clipperton Fracture Zone to the South where significant concentrations were found ni Ni-Cu. During the CCOP/SOPAC-IOC/IDOE International workshop on the "Geology Mineral Resources and Geophysics of the South Pacific" held in Fiji in September 1975, a working group on manganese nodules was formed by scientists from: CNEXO, Brest, the Institute of Oceanography, New Zealand, Imperial College, London and the Technical University of Aachen. A draft project was presented in July 1976 by J. Andrews, University of Hawaii and G. Pautot, Cnexo on a joint survey under the name of: "Hawaii-Tahiti Transect program". Further details were worked on in September 1976 during the International Geological Congress in Sydney with the participation of D. Cronan, Imperial College, Glasby, New Zealand Geological Survey and G. Friedrich, Aachen TU. The scientific final program was established in July 1977, planning on the participation of three research vessels: the Suroit (CNEXO), the Kana Keoki (U. of Hawaii) and the Sonne (Aachen TU). Several survey areas were selected across the Pacific Ocean (Areas A, B, C, D, E, F, G and H) with about the same crustal age (about 40 million years) and a similar water depths. Being near large fault zones, the ares would be adequate to study the influences of biological productivity, sedimentation rate and possibly volcanic activity on the formation and growth of manganese nodules. The influnece of volcanic activity study would particularly apply to area G being situated near the Marquesas Fracture Zone. The cruise from R/V Sonne started in August 1978 over areas C, D, F, G K. The R/V suroit conducted a similar expedition in 1979 over areas A, B, C, D, E, H and I. Others cruises were planned during the 1979-1980 for the R/V Kana Keoki. The present text relates the R/V Sonne Cruises SO-06/1 and SO-06/2 held within the frame work of this international cooperative project.
Resumo:
The Rieseberger Moor is a fen, 145 hectares in size, situated about 20 km east of Brunswick (Braunschweig), Lower Saxony, Germany. Peat was dug in the fen - with changing intensity - since the mid-18th century until around AD 1955. According to Schneekloth & Schneider (1971) the remaining peat (fen and wood peat) is predominantly 1.5 to 2 m thick (maximum 2.7 m). Part of the fen - now a nature reserve (NSG BR 005) - is wooded (Betula, Salix, Alnus). For more information on the Rieseberger Moor see http://de.wikipedia.org/wiki/Rieseberger_Moor. Willi Selle was the first to publish pollen diagrams from this site (Selle 1935, profiles Rieseberger Torfmoor I and II). This report deals with a 2.2 m long profile from the wooded south-eastern part of the fen consisting of strongly decomposed fen peat taken A.D. 1965 and studied by pollen analysis in the same year. The peat below 1.45 m contained silt and clay, samples 1.48 and 1.58 m even fine sand. These samples had to be treated with HF (hydrofluoric acid) in addition to the treatment with hot caustic potash solution. The coring ended in sandy material. The new pollen data reflect the early part of the known postglacial development of the vegetation of this area: the change from a birch dominated forest to a pine forest and the later spreading of Corylus and of the thermophilous deciduous tree genera Quercus, Ulmus, Tilia and Fraxinus followed by the expansion of Alnus. The new data are in agreement with Selle's results, except for Alnus, which in Selle's pollen diagram II shows high values (up to 42% of the arboreal pollen sum) even in samples deposited before Corylus and Quercus started to spread. On contrary the new pollen diagram shows that alder pollen - although present in all samples - is frequent in the three youngest pollen spectra only. A period with dominating Alnus as seen in the uppermost part of Selle's pollen diagrams is missing. The latter is most likely the result of peat cutting at the later coring site, whereas the early, unusually high alder values of Selle's pollen study are probably caused by contamination of the pollen samples with younger peat. Selle took peat samples usually with a "Torfbohrer" (= Hiller sampler). This side-filling type of sampler with an inner chamber and an outer loose jacket offers - if not handled with appropriate care - ample opportunities to contaminate older peat with carried off younger material. Pollen grains of Fagus (2 % of the arboreal pollen sum) were found in two samples only, namely in the uppermost samples of the new profile (0.18 m) and of Selle's profile I (0.25 m). If this pollen is autochthonous, with other words: if this surface-near peat was not disturbed by human activities, the Fagus pollen indicates an Early Subboreal age of this part of the profile. The accumulation of the Rieseberg peat started during the Preboreal. Increased values of Corylus, Quercus and Ulmus indicate that sample 0.78 m of the new profile is the oldest Boreal sample. The high Alnus values prove the Atlantic age of the younger peat. Whether Early Subboreal peat exists at the site is questionable, but evidently none of the three profiles reaches to Late Subboreal time, when Fagus spread in the region. Did peat-growth end during the Subboreal? Did younger peat exist, but got lost by peat cutting or has younger peat simply not yet been found in the Rieseberg fen? These questions cannot be answered with this study. The temporary decline of the curve of Pinus for the benefit of Betula during the Preboreal, unusual for this period, is contemporaneous with the deposition of sand (Rieseberger Moor II, 1.33 - 1,41 m; samples 1.48 and 1.58 m of the new profile) and must be considered a local phenomenon. Literature: Schneekloth, Heinrich & Schneider, Siegfried (1971). Die Moore in Niedersachsen. 2. Teil. Bereich des Blattes Braunschweig der Geologischen Karte der Bundesrepublik Deutschland (1:200000). - Schriften der wirtschaftswissenschaftlichen Gesellschaft zum Studium Niedersachsens e.V. Reihe A I., Band 96, Heft 2, 83 Seiten, Göttingen. Selle, Willi (1935) Das Torfmoor bei Rieseberg. - Jahresbericht des Vereins für Naturwissenschaft zu Braunschweig, 23, 46-58, Braunschweig.